

Java EE 5 Development using
GlassFish Application Server

The complete guide to installing and configuring the
GlassFish Application Server and developing Java EE 5
applications to be deployed to this server

David R. Heffelfinger

 BIRMINGHAM - MUMBAI

Java EE 5 Development using GlassFish
Application Server
The complete guide to installing and configuring the GlassFish
Application Server and developing Java EE 5 applications to be
deployed to this server

Copyright © 2007 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2007

Production Reference: 1031007

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847192-60-8

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

Credits

Author

David R. Heffelfinger

Reviewers

Meenakshi Verma

Kim Mark Lewis

Acquisition Editor

Priyanka Baruah

Technical Editor

Ajay.S

Editorial Manager

Dipali Chittar

Project Manager

Patricia Weir

Project Coordinator

Sagara Naik

Indexer

Monica Ajmera

Proofreader

Chris Smith

Production Coordinator

Shantanu Zagade

Cover Designer

Shantanu Zagade

About the Author

David Heffelfinger has been developing software professionally since 1995;
he has been using Java as his primary programming language since 1996. He has
worked on many large-scale projects for several clients including Freddie Mac,
Fannie Mae, and the US Department of Defense. He has a Masters degree in Software
Engineering from Southern Methodist University. David is editor in chief of
Ensode.net (http://www.ensode.net), a website about Java, Linux, and other
technology topics.

First and foremost, I would like to thank my family for putting up
with me spending several hours a day working on this book; without
your support, I wouldn't have been able to accomplish this.

I would also like to thank the Packt Publishing staff for their help
and support in getting this book published. I am especially grateful
to Priyanka Baruah, who first contacted me regarding this book,
Patricia Weir for her patience regarding the several changes to the
book's outline, Sagara Naik for keeping track of the schedule. I
would also like to thank the technical reviewers, Kim Lewis and
Meenakshi Verma for providing excellent suggestions. Last but not
least, I would also like to thank Douglas Paterson, who gave me the
opportunity to get my first book published (and who wished to
work on a second book with me) for supporting my decision to work
on this book.

About the Reviewers

Meenakshi Verma has more than nine years of experience in Analysis, Design,
Development, and Implementation of stand-alone and web-based applications using
various languages like Java-based technologies, C, and BBx. She is proficient in
developing applications using J2EE technologies.

Meenakshi has also done the technical review of the Packt book titled Jasper Reports
for Java Developers by David Heffelfinger.

She is currently working at Sapient's Toronto Office.

Kim Mark Lewis has been a consultant since 1991 to the US Federal Government,
working on financial and human resource systems for a variety of agencies such
as NASA, the Federal Communications Commission, the Federal Reserve Board,
the Department of the Army, and the Department of the Navy. Kim divides his
professional programming life between Java and .NET. He is married and has one
daughter and is currently living in the Washington D.C. area.

Table of Contents
Preface	 1
Chapter 1: Getting Started with GlassFish	 5

Overview of Java EE and GlassFish	 5
GlassFish Advantages	 6

Obtaining GlassFish	 7
Installing GlassFish	 8

GlassFish Dependencies	 8
Performing the Installation	 8

Verifying the Installation	 10
Deploying Our First Java EE Application	 12

Deploying an Application through the Web Console	 12
Undeploying an Application through the Web Console	 17
Deploying an Application through the Command Line	 19
Undeploying an Application through the Command Line	 20

GlassFish Domains Explained	 21
Creating Domains	 21
Deleting Domains	 23
Stopping a Domain	 23
Setting Up Database Connectivity	 24
Setting Up Connection Pools	 24

Summary	 31
Chapter 2: Servlet Development and Deployment	 33

Writing Our First Servlet	 34
Compiling the Servlet	 36
Configuring the Servlet	 37
Packaging the Web Application	 38
Deploying the Web Application	 40
Testing the Web Application	 40
Processing HTML Forms	 42

Table of Contents

[ii]

Request Forwarding and Response Redirection	 49
Request Forwarding	 49
Response Redirection	 53

Persisting Application Data across Requests	 56
Summary	 59

Chapter 3: JavaServer Pages	 61
Introduction to JavaServer Pages	 61
Developing Our First JSP	 62
JSP Implicit Objects	 65
JSPs and JavaBeans	 73

Reusing JSP Content	 78
JSP Custom Tags	 81
Extending SimpleTagSupport	 81
Using Tag Files to Create Custom JSP Tags	 87

Unified Expression Language	 91
Summary	 95

Chapter 4: Database Connectivity	 97
The CustomerDB Database	 97
JDBC	 99

Retrieving Data from a Database	 99
Modifying Database Data	 107
The Java Persistence API	 109

Entity Relationships	 115
One-to-One Relationships	 116
One-to-Many Relationships	 122
Many-to-Many Relationships	 128

Composite Primary Keys	 134
Java Persistence Query Language	 139

Final Notes	 142
Summary	 143

Chapter 5: JSP Standard Tag Library	 145
Core JSTL Tag Library	 145
Formatting JSTL Tag Library	 154
SQL JSTL Tag Library	 158
XML JSTL Tag Library	 163
JSTL Functions	 167
Summary	 171

Chapter 6: JavaServer Faces	 173
Developing Our First JSF Application	 172
Custom Data Validation	 184

Table of Contents

[iii]

Creating Custom Validators	 184
Validator Methods	 187

Customizing JSF's Default Messages	 191
Integrating JSF and JPA	 196

JSF Core Components	 203
<f:actionListener>	 203
<f:attribute>	 203
<f:convertDateTime>	 204
<f:convertNumber>	 204
<f:converter>	 204
<f:facet>	 205
<f:loadBundle>	 206
<f:param>	 206
<f:phaseListener>	 206
<f:selectItem>	 206
<f:selectItems>	 207
<f:setPropertyActionListener>	 207
<f:subview>	 207
<f:validateDoubleRange>	 208
<f:validateLength>	 208
<f:validateLongRange>	 208
<f:validator>	 209
<f:valueChangeListener>	 209
<f:verbatim>	 209
<f:view>	 209

JSF HTML Components	 210
<h:column>	 210
<h:commandButton>	 210
<h:commandLink>	 211
<h:dataTable>	 211
<h:form>	 211
<h:graphicImage>	 212
<h:inputHidden>	 212
<h:inputSecret>	 212
<h:inputText>	 212
<h:inputTextarea>	 212
<h:message>	 213
<h:messages>	 213
<h:outputFormat>	 213
<h:outputLabel>	 214
<h:outputLink>	 214
<h:outputText>	 214
<h:panelGrid>	 215
<h:panelGroup>	 215
<h:selectBooleanCheckbox>	 216
<h:selectManyCheckbox>	 217
<h:selectManyListbox>	 217
<h:selectManyMenu>	 217
<h:selectOneListbox>	 217

Table of Contents

[iv]

<h:selectOneMenu>	 218
<h:selectOneRadio>	 218

Additional JSF Tag Libraries	 218
Summary	 219

Chapter 7: Java Messaging Service	 221
Setting Up GlassFish for JMS	 221

Setting Up a JMS Connection Factory	 221
Setting Up a JMS Message Queue	 226
Setting Up a JMS Message Topic	 227

Message Queues	 228
Sending Messages to a Message Queue	 228
Retrieving Messages from a Message Queue	 232
Asynchronously Receiving Messages from a Message Queue	 234
Browsing Message Queues	 237

Message Topics	 239
Sending Messages to a Message Topic	 239
Receiving Messages from a Message Topic	 241
Creating Durable Subscribers	 243

Summary	 246
Chapter 8: Security	 247

Security Realms	 247
Predefined Security Realms	 248

admin-realm	 249
The file Realm	 251
The certificate Realm	 265

Defining Additional Realms	 273
Defining Additional File Realms	 273
Defining Additional Certificate Realms	 274
Defining an LDAP Realm	 275
Defining a Solaris Realm	 276
Defining a JDBC Realm	 277
Defining Custom Realms	 283

Summary	 289
Chapter 9: Enterprise JavaBeans	 291

Session Beans	 292
Simple Session Bean	 292
A More Realistic Example	 295
Invoking Session Beans from Web Applications	 298

Message-Driven Beans	 301
Transactions in Enterprise Java Beans	 302

Container-Managed Transactions	 302
Bean-Managed Transactions	 306

Table of Contents

[�]

Enterprise JavaBean Life Cycles	 308
Stateful Session Bean Life Cycle	 308
Stateless Session Bean Life Cycle	 312
Message-Driven Bean Life Cycle	 313

EJB Timer Service	 313
EJB Security	 316

Client Authentication	 320
Summary	 322

Chapter 10: Web Services	 323
Developing Web Services with JAX-WS	 323

Developing a Web Service Client	 330
Sending Attachments to Web Services	 336
Exposing EJBs as Web Services	 339

EJB Web Service Clients	 340
Securing Web Services	 341
Securing EJB Web Services	 343

Summary	 345
Chapter 11: Beyond Java EE	 347

Facelets	 347
Downloading Facelets	 348
Configuring Our Facelets Application	 349
Writing a Facelets Application	 351
Facelets Templating	 359

Ajax4jsf	 364
Downloading Ajax4jsf	 364
Configuring Our JSF Application for Ajax4jsf	 365
Writing an AJAX-Enabled Application with Ajax4jsf	 366

Seam	 373
Downloading Seam	 374
Configuring a Seam Application	 375
Developing a Seam Application	 379

Summary	 385
Appendix A: Sending Email from Java EE Applications	 387

GlassFish Configuration	 387
Implementing Email Delivery Functionality	 391

Appendix B: IDE Integration	 395
NetBeans	 395
Eclipse	 397

Index	 403

Preface
Project GlassFish was formally announced at the 2005 JavaOne conference. Version
one of the GlassFish application server was released to the public approximately
a year later, at the 2006 JavaOne conference. GlassFish version one became the
reference implementation for the Java EE 5 specification, and as such, was the first
available application server compliant with this specification.

While releasing the first available Java EE 5 application server was a tremendous
accomplishment, the first version of GlassFish lacked some enterprise features such
as clustering and High Availability. GlassFish version 2, released in September 2007,
added these and other enterprise features, in addition to other features such as an
enhanced web based administration console.

This book will guide you through the development and deployment of Java
EE 5-compliant application on GlassFish version 2. It also covers application
development using frameworks that build on top of the Java EE 5 specification,
including Facelets, Ajax4jsf, and Seam.

What This Book Covers
Chapter 1 provides an overview of Glassfish, including how to install it, configure it,
and verify the installation.

Chapter 2 covers how to develop server-side web applications using the Servlet API.

Chapter 3 explains how to develop web applications using JavaServer Pages (JSPs),
including how to develop and use JSP custom tags.

Chapter 4 discusses how to develop Java EE applications that interact with a
relational database system through the Java Persistence API (JPA) and through the
Java Database Connectivity API (JDBC).

Preface

[�]

Chapter 5 explains how to use the JSP Standard Tag Library (JSTL) when developing
JavaServer Pages.

Chapter 6 covers how to develop applications using the JavaServer Faces (JSF)
component framework to build web applications.

Chapter 7 explains how to develop messaging applications though the Java
Messaging Service (JMS) API.

Chapter 8 covers securing J2EE applications through the Java Authentication and
Authorization Service (JAAS).

Chapter 9 discusses how to develop Enterprise Java Beans that adhere to the
EJB 3 specification.

Chapter 10 explains how to develop and deploy web services that conform to the
JAX-WS 2.1 specification.

Chapter 11 covers frameworks that build on top of the Java EE 5 specification,
including Seam, Facelets, and Ajax4Jsf.

Appendix A covers sending email from Java EE Applications.

Appendix B covers IDE integration.

Who is This Book for
This book is aimed at Java developers wishing to become proficient with Java EE 5,
who are expected to have some experience with Java and to have developed and
deployed applications in the past, but need no previous knowledge of Java EE or
J2EE. It teaches the reader how to use GlassFish to develop and deploy applications.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "We can
include other contexts through the use of the include directive."

Preface

[�]

A block of code will be set as follows:

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Server Date And Time</title>
</head>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

</head>
<body>
<p>Server date and time: <% out.print(new Date()); %>

</p>
</body>

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"clicking the Next button moves you to the next screen".

Important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[�]

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/support, and select this book from the list of titles
to download any example code or extra resources for this book. The files available
for download will then be displayed.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the Submit Errata link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Getting Started with
GlassFish

In this chapter, we will discuss how to get started with GlassFish. Some of the topics
discussed in this chapter are:

An overview of Java EE and GlassFish
Obtaining GlassFish
Installing GlassFish
Verifying the GlassFish Installation
Deploying Java EE Applications
Setting Up Database Connectivity

Overview of Java EE and GlassFish
Java EE (formerly called J2EE) is a standard set of technologies for server-side
Java development. Java EE technologies include Servlets, JavaServer Pages (JSPs),
JavaServer Faces (JSF), Enterprise JavaBeans (EJBs), and the Java Messaging
Service (JMS).

Several commercial and open-source application Java EE servers exist. Java EE
application servers, such as GlassFish, allow application developers to develop
and deploy Java EE-compliant applications. Other open-source Java EE application
servers include Red Hat's JBoss, the Apache Software Foundation's Geronimo, and
ObjectWeb's JOnAS.

Commercial application servers include BEA's Weblogic, IBM's Websphere, and the
Oracle Application Server.

•

•

•

•

•

•

Getting Started with GlassFish

[�]

GlassFish is an open-source, freely available, Java EE application server. GlassFish
is dual licensed under the Common Development and Distribution License (CDDL)
and the GNU Public License (GPL) version 2.

To find out more about GlassFish's license, see
https://glassfish.dev.java.net/public/CDDL+GPL.html.

Like all Java EE-compliant application servers, GlassFish provides the necessary
libraries to allow us to develop and deploy Java applications compliant with
Java EE specifications.

GlassFish Advantages
With so many options in Java EE application servers, why choose GlassFish? Besides
the obvious advantage of GlassFish being available free of charge, it offers the
following benefits:

It is made by Sun Microsystems
Sun Microsystems is the steward of Java language, and the
Java EE specification.

Commercial support is available
Sun Microsystems sells a re-packaged version of GlassFish
called the Sun Java System Application Server. Commercial
support is available (at a cost) from Sun Microsystems for this
re-packaged GlassFish version. Many software development
shops will not use any software for which commercial
support is not available; therefore commercial support
availability allows GlassFish to be used in environments
where it otherwise wouldn't be.

It is the Java EE reference Implementation
GlassFish is the Java EE Reference implementation. What this
means is that other application servers may use GlassFish
to make sure their product complies with the specification.
GlassFish could theoretically be used to debug other
application servers. If an application deployed under another
application server is not behaving properly, but it does
behave properly when deployed under GlassFish, then it is
more than likely that the improper behavior is due to a bug in
the other application server.

•

°

•

°

•

°

Chapter 1

[�]

It supports the latest versions of the Java EE specification
GlassFish is the reference Java EE specification, so it tends
to implement the latest specifications before any other
application server in the market.

Obtaining GlassFish
GlassFish can be downloaded from https://glassfish.dev.java.net by clicking
an image that looks like this:

The image should be near the top right window of the page.

After clicking on the image, and scrolling down to a section titled Binary builds
around the middle of the resulting page, you should see links to download GlassFish
for several different architectures. Currently Solaris Sparc, Solaris x86, Windows,
Linux, and MacOS are supported.

•

°

Getting Started with GlassFish

[�]

To download GlassFish, simply click on the link for your platform; the file should
start downloading immediately. After the file finishes downloading, you should
have a file called something like glassfish-installer-v2-b58g.jar; the exact file
name will depend on the exact GlassFish version and platform.

Installing GlassFish
Installing GlassFish is an easy process; however, GlassFish assumes that some
dependencies are present in your system.

GlassFish Dependencies
Before GlassFish can be installed, a recent version of the Java Development Kit must
be present in your system and (optionally) the Apache ANT tool.

Java Development Kit
In order to install GlassFish, a recent version of the
Java Development Kit (JDK) must be installed on your
workstation (JDK 1.5 or newer required), and the java
executable must be in your system PATH. The latest JDK can
be downloaded from http://java.sun.com/. Please refer to
the JDK installation instructions for your particular platform
at http://java.sun.com/javase/6/webnotes/install/
index.html.

ANT (Optional)
Ant is a very popular build tool; it can be downloaded from
http://ant.apache.org. A version of ANT is included
with GlassFish, therefore this step is optional. If you already
have ANT installed on your system you can use it to install
GlassFish. Just make sure that the ant script is executable and
in your system's PATH. Please note that GlassFish requires
ANT 1.6.5 or later.

Performing the Installation
Once the dependencies have been installed, copy the file downloaded in the previous
section to an appropriate installation location and run the following command from
a terminal window:

java -Xmx256m -jar glassfish-installer-v2-b58g.jar

•

°

•

°

Chapter 1

[�]

The actual file name at the end of the command will depend on the
version of GlassFish downloaded.

After running this command, a window prompting you to accept the license terms
will show up.

Scroll all the way down and click on the button labeled Accept.

You should see a lot of text scrolling on your terminal window, after the text stops
scrolling, you should see the following text at the bottom of your terminal window:

installation complete.

The installer creates a directory called glassfish at the location where we ran the
above command from.

Although we saw the above message when we completed the step required in
the previous paragraph, we are not quite done installing GlassFish. Inside the
glassfish directory, there is an ANT build script that must be executed to complete
the installation. The file name for this build script is setup.xml. This script can be
executed from the command line by changing to the GlassFish installation directory
and typing the following command:

ant -f setup.xml

Getting Started with GlassFish

[10]

After executing this command you should see the following message at the bottom
of the terminal the time taken may vary:

BUILD SUCCESSFUL

Total time: 43 seconds

The above command assumes that ANT 1.6.5 or newer is installed in the
system, and that the ant executable is in the system PATH. GlassFish
includes ANT; to access it from any directory add [glassfish
installation directory]/glassfish/lib/ant/bin to your
system PATH.

We have now successfully installed GlassFish and we are ready to start it for the
first time.

Verifying the Installation
To start GlassFish, change directory to [glassfish installation directory]/
glassfish/bin, and execute the following command:

./asadmin start-domain domain1

The above command and most commands shown in this chapter assume
a Unix or Unix-like operating system. For Windows systems, the initial
"./" is not necessary.

After executing the above command you should see a message similar to the
following in the command line console:

Domain domain1 is ready to receive client requests. Additional services are being
started in background.

The above message will be followed by additional information indicating the ports
that GlassFish listens to and other information.

We can then open a browser window and type the following URL in the browser's
location text field: http://localhost:8080.

Chapter 1

[11]

If everything went well you should see a page similar to the following:

Getting Help
If any of the above steps fail, a good place to ask for help is the
GlassFish forums at http://forums.java.net/jive/forum.
jspa?forumID=56.

Getting Started with GlassFish

[12]

Deploying Our First Java EE Application
To further test that our GlassFish installation is running properly, we will deploy
a war (Web ARchive) file and make sure it deploys and executes properly. Before
moving on, please download the file simpleapp.war from this book's website.

Deploying an Application through the Web Console
To deploy simpleapp.war, open a browser and navigate to the following URL:
http://localhost:4848; you should be greeted with a login screen that looks like
the following:

Chapter 1

[13]

The default administrator user name/password combination is admin/adminadmin
and log in using these credentials; you should see a page like the following:

Changing the Administrator Password
It is good practice to change the default administrator password. To
change your administrator password click on the Application Server
menu item at the top left, then click on the Administrator Password tab.
Then enter and confirm the new administrator password and click on the
Save button.

Getting Started with GlassFish

[14]

Now, click on the Deploy Web Application item on the main page (highlighted in
the previous screenshot). You should now see a screen like the following:

The war file can either be deployed by "uploading it" to the server (this functionality
is there to upload files to remote servers; in our case the workstation and server are
one and the same), or by navigating the file system to select the desired war file.

Chapter 1

[15]

Even though our server and workstation are one and the same, we will use the
upload option as navigation is much easier (selecting the local packaged file option
will result in us having to navigate through the whole directory tree; by selecting the
upload option we only have to navigate from our home directory).

After clicking on the Browse button and navigating to the location of simpleapp.war,
the screen will look similar to this:

Getting Started with GlassFish

[16]

Notice how the Application Name and Context Root text fields are automatically
filled out.

Clicking on the OK button at the top right of the page will deploy the application.

Chapter 1

[17]

As can be seen in the screenshot above, our simpleapp application now has
been deployed.

To execute the simpleapp application, type the following URL in the browser's
location text field: http://localhost:8080/simpleapp/simpleservlet. The
resulting page should look like this:

That's it! We have successfully deployed our first Java EE application.

Undeploying an Application through the Web
Console
In the next section, we explain how to deploy a web application through the
command line. In order for the instructions in the next section to work, we need to
undeploy simpleapp.war.

To undeploy the application that we deployed in the previous section, log in
to the GlassFish web console by typing the following URL in the browser:
http://localhost:4848 and entering the admin user name and
corresponding password.

Getting Started with GlassFish

[18]

Then click on the Web Applications menu item near the top left of the page and click
on the checkbox by simpleapp web application.

Chapter 1

[19]

Then click on the Undeploy button; the application will be undeployed and removed
from the list of deployed applications.

Deploying an Application through the
Command Line
Now that we have undeployed the simpleapp file, we are ready to deploy it
using the command line. To deploy the application in this manner, simply copy
simpleapp.war to [glassfish installation directory]/glassfish/domains/
domain1/autodeploy. The application will automatically be deployed just by
copying it to this directory.

Getting Started with GlassFish

[20]

We can verify that the application has successfully been deployed by looking at the
server log. The server log can be found at [glassfish installation directory]/
glassfish/domains/domain1/logs/server.log. The last few lines on this file
should look something like this:

[#|2007-02-13T20:57:41.825-0500|INFO|sun-appserver9.1|javax.enterprise.
system.tools.deployment|_ThreadID=23;_ThreadName=Timer-4;|deployed with
moduleid = simpleapp|#]

[#|2007-02-13T20:57:42.100-0500|INFO|sun-appserver9.1|javax.enterprise.
system.tools.deployment|_ThreadID=23;_ThreadName=Timer-4;|[AutoDeploy]
Successfully autodeployed : /opt/glassfish/domains/domain1/autodeploy/
simpleapp.war.|#]

Of course, we can also verify the deployment by navigating to the URL for the
application, which will be the same one that we used when deploying through the
web console: http://localhost:8080/simpleapp/simpleservlet; the application
should execute properly.

An alternative way of deploying an application through the command line is to use
the following command:

asadmin deploy [path to file]/simpleapp.war

The server log file should show a message similar to the following:

[#|2007-02-15T18:03:13.879-0500|INFO|sun-appserver9.1|javax.enterprise.
system.tools.deployment|_ThreadID=15;_ThreadName=Thread-25;|deployed with
moduleid = simpleapp|#]

Undeploying an Application through the
Command Line
To undeploy an application from the command line simply delete it from the
[glassfish installation directory]/glassfish/domains/domain1/
autodeploy directory. It will be automatically undeployed; this can be verified by
looking at the server log, which should have some lines that look something like this:

[#|2007-02-13T21:04:43.753-0500|INFO|sun-appserver9.1|javax.enterprise.
system.tools.deployment|_ThreadID=23;_ThreadName=Timer-4;|Autoundeploying
application :simpleapp|#]

[#|2007-02-13T21:04:44.023-0500|INFO|sun-appserver9.1|javax.enterprise.
system.tools.deployment|_ThreadID=23;_ThreadName=Timer-4;|[AutoDeploy]
Successfully autoundeployed : /opt/glassfish/domains/domain1/autodeploy/
simpleapp.war.|#]

Chapter 1

[21]

As can be seen from this section and the previous one, deploying and undeploying
an application through the command line is a very simple and fast process that
saves a lot of time when testing applications. All future examples in this book will be
deployed by copying the appropriate files to the autodeploy directory.

The asadmin executable can be used to undeploy an application as well, by issuing a
command like the following:
asadmin undeploy simpleapp

The following message should be shown at the bottom of the terminal window:
Command undeploy executed successfully.

Please note that the file extension is not used to undeploy the application, the
argument to asadmin undeploy should be the context root for the application (which
is typed right after http://localhost:4848 to access the application through the
browser), which defaults to the war file name.

In the next chapter, we will see how to change the default context root for
an application.

GlassFish Domains Explained
The alert reader might have noticed that the autodeploy directory is under a
domains/domain1 subdirectory. GlassFish has a concept of domains. Domains allow
a collection of related applications to be deployed together. A default domain called
domain1 is created when installing GlassFish.

Creating Domains
Additional domains can be created from the command line by issuing the
following command:
asadmin create-domain domainname

The above command takes several parameters to specify ports where the domain
will listen to for several services (HTTP, Admin, JMS, IIOP, secure HTTP, etc.); type
the following command in the command line to see this parameters:
asadmin create-domain --help

If we want several domains to execute concurrently on the same server, these ports
must be chosen carefully, because specifying the same ports for different services
(or even the same service across domains) will prevent one of the domains from
working properly.

Getting Started with GlassFish

[22]

The default ports for the default domain1 domain are listed in the following table:

Service Port
Admin 4848
HTTP 8080
Java Messaging System (JMS) 7676
Internet Inter-ORB Protocol (IIOP) 3700
Secure HTTP (HTTPS) 8181
Secure IIOP 3820
Mutual Authorization IIOP 3920
Java Management Extensions (JMX)
Administration

8686

Please note that when creating a domain, the only port that needs to be specified
is the admin port; if the other ports are not specified, the default ports listed in the
table above will be used. Care must be taken when creating a domain, because, as
explained above, two domains cannot run concurrently in the same server if any of
their services listen for connections on the same port.

An alternative method of creating a domain, without having to specify ports for
every service, is to issue the following command:

asadmin createdomain --portbase [port number] domainname

The value of the --portbase parameter dictates the base port for the domain; ports
for the different services will be offsets of the given port number. The following table
lists the ports assigned to all the different services.�

Service Port
Admin portbase + 48
HTTP portbase + 80
Java Messaging System (JMS) portbase + 76
Internet Inter-ORB Protocol (IIOP) portbase + 37
Secure HTTP (HTTPS) portbase + 81
Secure IIOP portbase + 38
Mutual Authorization IIOP portbase + 39
Java Management Extensions (JMX)
Administration

portbase + 86

Of course, care must be taken when choosing the value for portbase, making sure
that none of the assigned ports collide with any other domain.

Chapter 1

[23]

As a rule of thumb, creating domains using a portbase number greater
than 8000 and divisible by 1000 should create domains that don't conflict
with each other; for example, it should be safe to create a domain using a
portbase of 9000, another one using a portbase of 10000, so on and
so forth.

Deleting Domains
Deleting a domain is very simple; it can be accomplished by issuing the following
command in the command line:

asadmin delete-domain domainname

We should see a message like the following on the terminal window:

Domain domainname deleted.

Please use the above command with care; once a domain is deleted, it cannot be
easily recreated (all deployed applications will be gone, as well as any connection
pools, data sources, etc.).

Stopping a Domain
A domain that is executing can be stopped by issuing the following command:

asadmin stop-domain domainname

The above command will stop the domain named domainname.

If only one domain is running, the domain name argument is optional.

This book will assume the reader is working with the default domain
called domain1 and the default ports. If this is not the case, instructions
given need to be modified to match the appropriate domain and port.

Getting Started with GlassFish

[24]

Setting Up Database Connectivity
Any non-trivial Java EE application will connect to a Relational Database
Management Server (RDBMS). Supported RDBMS systems include JavaDB, Oracle,
Derby, Sybase, DB2, Pointbase, MySQL, PostgreSQL, Informix, Cloudscape, and SQL
Server. In this section, we will demonstrate how to set up GlassFish to communicate
with PostgreSQL; the procedure is similar for others.

GlassFish comes bundled with an RDBMS called JavaDB. This RDBMS
is based on Apache Derby. To limit the downloads and configuration
needed to follow this book's code, all examples needing an RDBMS will
use the embedded JavaDB RDBMS.

Setting Up Connection Pools
The first step to follow when setting up a connection pool is to copy the JAR file
containing the JDBC driver for our RDBMS in the lib directory of the domain
(consult your RDBMS documentation for information on where to obtain this JAR
file). If the GlassFish domain where we want to add the connection pool is running
when copying the JDBC driver, it must be restarted for the change to take effect.

The domain can be restarted by executing asadmin stop-domain domain1 followed
by executing asadmin start-domain domain1.

Once the JDBC driver has been copied to the appropriate location and the application
server has been restarted, log in to the admin console by pointing the browser to
http://localhost:4848 (assuming the current domain is listening on the default
admin port).

Chapter 1

[25]

Then click on Resources->JDBC->Connection Pools; the browser should now look
something like this:

Getting Started with GlassFish

[26]

Click on the New... button; after entering the appropriate values for our RDBMS, the
page should look something like this:

Chapter 1

[27]

After entering the appropriate data for the RDBMS and clicking the Next button, you
should see a page like the following:

Most of the default values on this page are sensible; scroll all the way down and
enter the appropriate data for our RDBMS, then click on the Finish button at the top
right of the screen.

Getting Started with GlassFish

[28]

Our newly created connection pool should now be visible in the list of
connection pools.

Chapter 1

[29]

After clicking on the JNDI name for the new connection pool, and clicking on the
Ping button, you should see a message like the following:

Our connection pool is now ready to be used by our applications.

Setting Up Data Sources
Java EE applications don't access connection pools directly, instead they access a data
source, which points to a connection pool. To set up a new data source, click on the
JDBC Resources menu item on the left-hand side of the web console, then click on
the New... button.

Getting Started with GlassFish

[30]

After filling out the appropriate information for our new data source, you should see
a page like this:

Chapter 1

[31]

After clicking the OK button, you can see our newly created data source:

Summary
In this chapter, we discussed how to download and install GlassFish. We also
discussed several methods of deploying Java EE application: through the GlassFish
web console, through the asadmin command, and by copying the file to the
autodeploy directory. We also discussed basic GlassFish administration tasks like
setting up domains and setting up database connectivity by adding connection pools
and data sources.

Servlet Development
and Deployment

In this chapter, we will discuss how to develop and deploy Java servlets. Some of the
topics covered are:

An explanation of what servlets are
Developing, configuring, packaging and deploying our first servlet
HTML form processing
Forwarding HTTP requests
Redirecting HTTP responses
Persisting data across HTTP requests

What is a Servlet? A servlet is a Java class that is used to extend the capabilities
of servers that host applications. Servlets can respond to requests and generate
responses. The base class for all servlets is javax.servlet.GenericServlet, this
class defines a generic, protocol-independent servlet.

By far, the most common type of servlet is an HTTP servlet; this type of servlet is
used in handling HTTP requests and generating HTTP responses. An HTTP servlet
is a class that extends the javax.servlet.http.HttpServlet class, which is a
subclass of javax.servlet.GenericServlet.

A servlet must implement one or more methods to respond to specific HTTP
requests. These methods are overridden from the parent HttpServlet class. As can
be seen in the following table, these methods are named so that knowing which one
to use is intuitive.

•

•

•

•

•

•

Servlet Development and Deployment

[34]

HTTP Request HttpServlet Method
GET doGet(HttpServletRequest request, HttpServletResponse

response)

POST doPost(HttpServletRequest request, HttpServletResponse
response)

PUT doPut(HttpServletRequest request, HttpServletResponse
response)

DELETE doDelete(HttpServletRequest request, HttpServletResponse
response)

Each of these methods take the same two parameters, namely an instance of a class
implementing the javax.servlet.http.HttpServletRequest interface and an
instance of a class implementing the javax.servlet.http.HttpServletResponse.
These interfaces will be covered in detail, later in this chapter.

Application developers never call the above methods directly; they are
called automatically by the application server whenever it receives the
corresponding HTTP request.

Of the four methods listed above, doGet() and doPost() are, by far, the most
commonly used.

An HTTP GET request is generated whenever a user types the servlet's URL in the
browser, when a user clicks on a link pointing to the servlet's URL, or when a user
submits an HTML form using the GET method that has an action pointing to the
servlet's URL. In any of these cases, the code inside the servlet's doGet() method
gets executed.

An HTTP POST request is typically generated when a user submits an HTML form
using the POST method and an action pointing to the servlet's URL. In this case, the
servlet's code inside the doPost() method gets executed.

Writing Our First Servlet
In chapter 1, we deployed a simple application that printed a message on the
browser window. That application basically consisted of a single servlet. In this
section, we will see how that servlet was developed, configured, and packaged.

Chapter 2

[35]

The code for the servlet is as follows:

package net.ensode.glassfishbook.simpleapp;

import java.io.IOException;
import java.io.PrintWriter;

import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class SimpleServlet extends HttpServlet
{
 protected void doGet(HttpServletRequest request, HttpServletResponse
response)
 {
 try
 {
 response.setContentType("text/html");
 PrintWriter printWriter = response.getWriter();
 printWriter.println("<h2>");
 printWriter
 .println("If you are reading this,
 your application server is good to go!");
 printWriter.println("</h2>");
 }
 catch (IOException ioException)
 {
 ioException.printStackTrace();
 }
 }
}

As this servlet is meant to execute when a user enters its URL in the browser
window, we need to override the doGet() method from the parent HttpServlet
class. As we explained, this method takes two parameters: an instance of a class
implementing the javax.servlet.http.HttpServletRequest interface, and an
instance of a class implementing the javax.servlet.http.HttpServletResponse
interface.

Even though HttpServletRequest and HttpServletResponse are interfaces,
application developers don't typically write classes implementing them. When
control goes to a servlet from an HTTP request, the application server (GlassFish, in
our case) provides objects implementing these interfaces.

Servlet Development and Deployment

[36]

The first thing our doGet() method does is to set the content type for the
HttpServletResponse object to "text/html". If we forget to do this, the default
content type used is "text/plain", which means that the HTML tags used a couple of
lines down will be displayed on the browser, as opposed to them being interpreted
as HTML tags.

Then we obtain an instance of java.io.PrintWriter by calling the
HttpServletResponse.getWriter() method. We can then send text output to
the browser by calling the PrintWriter.print() and PrintWriter.println()
methods (the previous example uses println() exclusively). As we set the content
type to "text/html", any HTML tags are interpreted properly by the browser.

Compiling the Servlet
To compile the servlet, the Java library included with GlassFish must be in the
CLASSPATH. This library is called javaee.jar, it can be found under [glassfish
installation directory]/glassfish/lib.

To compile from the command line using the javac compiler, a command like the
following must be issued (all in one line):

javac -cp /opt/glassfish/lib/javaee.jar:. net/ensode/glassfishbook/
simpleapp/SimpleServlet.java

Of course, these days very few developers compile code with the "raw" javac
compiler; instead, either a graphical IDE or a command line build tool like Apache
ANT or Apache Maven is used. Consult your IDE or build tool documentation for
information on how to add the javaee.jar library to its CLASSPATH.

Maven
Apache Maven is a build tool similar to ANT. However, Maven offers
a number of advantages over ANT including automatic download of
dependencies and standard commands for compilation and packaging of
applications. Maven was the build tool used to compile and package most
of the examples in this book, therefore it is recommended to have Maven
installed in order to easily build the examples.
When using Maven, the code can be compiled and packaged by issuing
the following command at the project's root directory (simpleapp in this
case): mvn package.

Maven can be downloaded from http://maven.apache.org/.

Chapter 2

[37]

Configuring the Servlet
Before we can deploy our servlet, we need to configure it. All Java EE web
applications are configured via an XML deployment descriptor named web.xml. The
web.xml deployment descriptor for our servlet is as follows:

<?xml version="1.0" encoding="UTF-8"?>
"<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="2.5"
 xmlns:xsi=" http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=" http://java.sun.com/xml/ns/
 javaee http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">"
 <servlet>
 <servlet-name>SimpleServlet</servlet-name>
 <servlet-class>
 net.ensode.glassfishbook.simpleapp.SimpleServlet
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>SimpleServlet</servlet-name>
 <url-pattern>/simpleservlet</url-pattern>
 </servlet-mapping>
</web-app>

The first few lines are boilerplate XML stating the XML version and encoding,
plus the schema used for the XML file and other information. It is safe to just copy
and paste these lines and reuse them across applications. The <servlet> and
<servlet-mapping> XML tags above are used to actually configure our servlet.

The <servlet> tag contains two nested tags. <servlet-name> defines a logical name
for the servlet, and <servlet-class> indicates the Java class defining the servlet.

The <servlet-mapping> tag also contains two nested tags: <servlet-name>, which
must match the value set inside the <servlet> tag and <url-pattern>, which sets
the URL pattern for which the servlet will execute.

<url-pattern> can be specified in one of two ways, by using a path prefix (which is
what the example above does), or by specifying an extension suffix.

Path prefix values for <url-pattern> indicate that any URL paths starting with the
given path will be serviced by the corresponding servlet. Path prefix values must
start with a forward slash.

Servlet Development and Deployment

[38]

Java EE web applications run from within a context root. The context root
is the first string in the URL that is not the server name or IP address,
nor the port. For example, in the URL http://localhost:8080/
simpleapp/simpleservlet, the string simpleapp is the context root.
The value for <url-pattern> is relative to the application's
context root.

Extension suffix values for <url-pattern> indicate that any URLs ending in the
given suffix will be serviced by the corresponding servlet. In the above example, we
chose to use a path prefix. Had we chosen to use an extension suffix, the <servlet-
mapping> tag would have looked something like this:

<servlet-mapping>
 <servlet>SimpleServlet</servlet>
 <url-pattern>*.foo</url-pattern>
</servlet-mapping>

This would direct any URLs ending with the string .foo to our servlet.

The reason the <servlet-name> tag is specified twice (once inside the <servlet> tag
and again inside the <servlet-mapping> tag) is because a Java EE 5 web application
can have more than one servlet, each of which must have a <servlet> tag in the
application's web.xml. The <servlet> tag for each must have a corresponding
<servlet-mapping> tag, and the <servlet-name> nested tag is used to indicate
which <servlet> tag corresponds to which <servlet-mapping> tag.

A Java EE 5 web.xml file can contain many additional XML tags.
However, these additional tags are not needed for this simple example.
Additional tags will be discussed in future examples when they
are needed.

Before we can execute our servlet, we need to package it as part of a web application
in a WAR (Web ARchive) file.

Packaging the Web Application
All Java EE 5 web applications must be packaged in a WAR (Web ARchive) file
before they can be deployed. A WAR file is nothing but a compressed file containing
our code and configuration. WAR files can be created by any utility that can create
files in ZIP format (for example, WinZip, 7-Zip, etc.). Also, many Java IDEs and build
tools such as ANT and Maven automate WAR file creation.

Chapter 2

[39]

A WAR file must contain the following directories (in addition to its root directory)

WEB-INF

WEB-INF/classes

WEB-INF/lib

The root directory contains JSPs (covered in the next chapter), HTML files, JavaScript
files, and CSS files.

WEB-INF contains deployment descriptors such as web.xml.

WEB-INF/classes contains the compiled code (.class files) and may optionally
contain property files. Just as with any Java classes, the directory structure must
match the package structure, therefore this directory typically contains several
subdirectories corresponding to the classes contained in it.

WEB-INF/lib contains JAR files containing any library dependencies our code
might have.

The root directory, WEB-INF, and WEB-INF/classes directories can have sub
directories. Any resources on a subdirectory of the root directory (other than
WEB-INF) can be accessed by prepending the subdirectory name to its file name. For
example, if there was a subdirectory called css containing a CSS file called style.
css, this CSS file could be accessed in JSPs and HTML files in the root directory by
the following line:

<link rel="stylesheet" type="text/css" media="screen" href="css/style.
css" />

Notice the css prefix to the file name, corresponding to the directory where the CSS
file resides.

To create our WAR file "from scratch", create the above directory structure in any
directory in your system, then follow the following steps:

1.	 Copy the web.xml file to WEB-INF.
2.	 Create the following directory structure under WEB-INF/classes: net/

ensode/glassfishbook/simpleapp.
3.	 Copy SimpleServlet.class to the simpleapp directory from step 2.
4.	 From the command line, issue the following command from the directory

right above WEB-INF: jar cvf simpleapp.war.

Servlet Development and Deployment

[40]

You should now have a WAR file ready for deployment.

When using Maven to build the code, the WAR file is automatically
generated when issuing the mvn package command. The WAR file can
be found under the target directory, it is named simpleapp.war.

Before we can execute our application, it needs to be deployed.

Deploying the Web Application
As we discussed in Chapter 1, there are several ways of deploying an application.
The easiest and most straightforward way to deploy any Java EE application is to
copy the deployment file (WAR file in this case) to the [glassfish installation
directory]/glassfish/domains/domain1/autodeploy directory.

After copying the WAR file to the autodeploy directory, the system log should show
a message similar to the following:

[#|2007-02-17T11:36:22.906-0500|INFO|sun-appserver9.1|javax.enterprise.
system.tools.deployment|_ThreadID=12;_ThreadName=Timer-4;|deployed with
moduleid = simpleapp|#]

[#|2007-02-17T11:36:23.424-0500|INFO|sun-appserver9.1|javax.enterprise.
system.tools.deployment|_ThreadID=12;_ThreadName=Timer-4;|[AutoDeploy]
Successfully autodeployed : /opt/glassfish/domains/domain1/autodeploy/
simpleapp.war.|#]

The system log can be found under [glassfish installation
directory]/glassfish/domains/domain1/logs/server.log.

The last line should contain the string "Successfully autodeployed" indicating that
our WAR file was deployed successfully.

Testing the Web Application
To verify that the servlet has been properly deployed, we need to point our browser
to http://localhost:8080/simpleapp/simpleservlet; after doing so, we should
see a page like the one shown in the following screenshot.

Chapter 2

[41]

Unsurprisingly, this is the same message as we saw when deploying the application
in Chapter 1, as this is the same application as we deployed then.

Earlier in this chapter, we mentioned that URL paths for a Java EE 5 application are
relative to their context root. The default context root for a WAR file is the name
of the WAR file itself (minus the .war extension). As can be seen in the screenshot
above, the context root for our application is simpleapp, which happens to match
the name of the WAR file. This default can be changed by adding an additional
configuration file to the WEB-INF directory of the WAR file. The name of this file
must be sun-web.xml. An example sun-web.xml that will change the context root of
our application from the default simpleapp to simple would look like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sun-web-app PUBLIC "-//Sun Microsystems, Inc.//DTD
Application Server 8.1 Servlet 2.4//EN" "http://www.sun.com/software/
appserver/dtds/sun-web-app_2_4-1.dtd">
<sun-web-app>

 <context-root>/simple</context-root>

</sun-web-app>

As can be seen in the above example, the context root for the application must be in
the <context-root> tag of the sun-web.xml configuration file. After redeploying
the simpleapp.war, directing the browser to http://localhost:8080/simple/
simpleservlet will execute our servlet.

The sun-web.xml file can contain a number of additional tags to
configure several aspects of the application. Additional tags will be
discussed in the relevant sections of this book.

Servlet Development and Deployment

[42]

Processing HTML Forms
Servlets are rarely accessed by typing their URL directly in the browser. The most
common use for servlets is to process data entered by users in an HTML form. In this
section, we illustrate this process.

Before digging into the servlet code and HTML markup, let's take a look at the web.
xml f﻿ile for this new application.

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.
com/xml/ns/j2ee/web-app_2_4.xsd">
 <servlet>
 <servlet-name>FormHandlerServlet</servlet-name>
 <servlet-class>
 net.ensode.glassfishbook.formhandling.FormHandlerServlet
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>FormHandlerServlet</servlet-name>
 <url-pattern>/formhandlerservlet</url-pattern>
 </servlet-mapping>
 <welcome-file-list>

 <welcome-file>dataentry.html</welcome-file>

 </welcome-file-list>

</web-app>

The above web.xml file is very similar to the one we saw in the previous
section; however, it contains an XML tag we haven't seen before, namely the
<welcome-file> tag. The <welcome-file> tag determines what file to direct to
when a user types a URL ending in the application's context root (for this example,
the URL would be http://localhost:8080/formhandling, as we are naming our
WAR file formhandling.war and not specifying a custom context root). We will
name the HTML file containing the form dataentry.html; this will cause GlassFish
to render it in the browser when the user types our application's URL and does not
specify a file name.

If no <welcome-file> is specified in the application's web.xml file,
GlassFish will look for a file named index.html and use it as the
welcome file. If it can't find it, it will look for a file named index.jsp
and use it as a welcome file. If it can't find it either one, it will display a
directory listing.

Chapter 2

[43]

The HTML file containing the form for our application looks like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Data Entry Page</title>
</head>
<body>
<form method="post" action="formhandlerservlet">

<table cellpadding="0" cellspacing="0" border="0">
 <tr>
 <td>Please enter some text:</td>
 <td>
 <input type="text" name="enteredValue" />

 </td>
 </tr>
 <tr>
 <td></td>
 <td><input type="submit" value="Submit"></td>
 </tr>
</table>
</form>
</body>
</html>

Notice how the value for the form's action attribute matches the value of the
servlet's <url-pattern> in the application's web.xml (minus the initial slash). As the
value of the form's method attribute is "post", our servlet's doPost() method will be
executed when the form is submitted.

Now let's take a look at our servlet's code:

package net.ensode.glassfishbook.formhandling;

import java.io.IOException;
import java.io.PrintWriter;

import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class FormHandlerServlet extends HttpServlet
{

 protected void doPost(HttpServletRequest request,

Servlet Development and Deployment

[44]

 HttpServletResponse response)
 {
 String enteredValue;

 enteredValue = request.getParameter("enteredValue");

 response.setContentType("text/html");

 PrintWriter printWriter;
 try
 {
 printWriter = response.getWriter();

 printWriter.println("<p>");
 printWriter.print("You entered: ");
 printWriter.print(enteredValue);

 printWriter.print("</p>");
 }
 catch (IOException e)
 {
 e.printStackTrace();
 }
 }

}

As can be seen in the above example, we obtain a reference to the value the user
typed by calling the request.getParameter() method. This method takes a single
String object as its sole parameter; the value of this string must match the name of
the input field in the HTML file. In this case, the HTML file has a text field named
"enteredValue":

<input type="text" name="enteredValue" />

Therefore the servlet has a corresponding line:

enteredValue = request.getParameter("enteredValue");

to obtain the text entered by the user and store it in the string variable named
enteredValue (the name of the variable does not need to match the input field
name, but naming it that way is good practice to make it easy to remember what
value the variable is holding).

Chapter 2

[45]

After packaging the preceding three files in a WAR file called formhandling.war,
then deploying the WAR file, we can see the rendered dataentry.html file by
entering the following URL in the browser: http://localhost:8080/formhandling.

After we enter "some text" in the text field and submit the form (either by hitting
"enter" or clicking on the Submit button), we should see the output of the servlet.

The HttpServletRequest.getParameter() method can be used to obtain the value
of any HTML input field that can only return one value (text boxes, text areas, single
selects, radio buttons, hidden fields, etc.). The procedure to obtain any of these fields
values is identical, in other words, the servlet doesn't care if the user typed in the
value in a text field, selected it from a set of radio buttons, etc. As long as the input
field's name matches the value passed to the getParameter() method, this code
will work.

Servlet Development and Deployment

[46]

When dealing with radio buttons, all related radio buttons must have
the same name. Calling the HttpServletRequest.getParameter()
method and passing the name of the radio buttons will return the value of
the selected radio button.

Some HTML input fields like checkboxes and multiple select boxes allow
the user to select more than one value. For these fields, instead of using the
HttpServletRequest.getParameter() method, the HttpServletRequest.
getParameterValues() method is used. This method also takes a string containing
the input field's name as its only parameter, and returns an array of strings
containing all the values that were selected by the user.

Let's add a second HTML file and a second servlet to our application to illustrate this
case. The relevant sections of this HTML are shown below.

<form method="post" action="multiplevaluefieldhandlerservlet">
<p>Please enter one or more options.</p>
<table cellpadding="0" cellspacing="0" border="0">
 <tr>
 <td><input name="options" type="checkbox" value="option1" />
 Option 1</td>
 </tr>
 <tr>
 <td><input name="options" type="checkbox" value="option2" />
 Option 2</td>
 </tr>
 <tr>
 <td><input name="options" type="checkbox" value="option3" />
 Option 3</td>
 </tr>
 <tr>
 <td><input type="submit" value="Submit" /></td>
 <td></td>
 </tr>
</table>
</form>

The new HTML file contains a simple form having three checkboxes and a submit
button. Notice how every checkbox has the same value for its name attribute. As
we mentioned before, any checkboxes that are clicked by the user will be sent to
the servlet.

Let's now take a look at the servlet that will handle the above HTML form.

package net.ensode.glassfishbook.formhandling;

import java.io.IOException;
import java.io.PrintWriter;

Chapter 2

[47]

import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class MultipleValueFieldHandlerServlet extends HttpServlet
{
 protected void doPost(HttpServletRequest request,
 HttpServletResponse response)
 {
 String[] selectedOptions = request.getParameterValues("options");

 response.setContentType("text/html");

 try
 {
 PrintWriter printWriter = response.getWriter();

 printWriter.println("<p>");
 printWriter.print("The following options were selected:");
 printWriter.println("
");

 if (selectedOptions != null)
 {
 for (String option : selectedOptions)
 {
 printWriter.print(option);
 printWriter.println("
");
 }
 }
 else
 {
 printWriter.println("None");
 }
 printWriter.println("</p>");
 }
 catch (IOException e)
 {
 e.printStackTrace();
 }
 }
}

The above code calls the request.getParameterValues() method and assigns its
return value to the selectedOptions variable. Farther down the doPost() method,
the code traverses the selectedOptions array and prints the selected values in
the browser.

Servlet Development and Deployment

[48]

This code uses the enhanced for loop introduced in JDK 1.5. Refer to
http://java.sun.com/j2se/1.5.0/docs/guide/language/
foreach.html for more information.

If no checkboxes are clicked, the request.getParameterValues() method will
return null; therefore it is a good idea to check for null before attempting to traverse
through this method's return values.

Before this new servlet can be deployed, the following lines need to be added to the
application's web.xml file:

<servlet>
 <servlet-name>MultipleValueFieldHandlerServlet</servlet-name>
 <servlet-class>
 net.ensode.glassfishbook.formhandling.
MultipleValueFieldHandlerServlet
 </servlet-class>
 </servlet>

and:

<servlet-mapping>
 <servlet-name>MultipleValueFieldHandlerServlet</servlet-name>
 <url-pattern>/multiplevaluefieldhandlerservlet</url-pattern>
 </servlet-mapping>

to assign a logical name and URL to the new servlet.

After re-creating the formhandling.war file by adding the compiled servlet and
the HTML file and redeploying it, we can see the changes in action by typing the
following URL in the browser window: http://localhost:8080/formhandling/
multiplevaluedataentry.html.

Chapter 2

[49]

After submitting the form, control goes to our servlet, and the browser window
should look something like this:

Of course, the actual message seen in the browser window will depend on what
checkboxes the user clicked on.

Request Forwarding and Response
Redirection
In many cases, one servlet processes form data, then transfers control to another
servlet or JSP to do some more processing or display a confirmation message on the
screen. There are two ways of doing this: either the request can be forwarded or the
response can be redirected to another servlet or page.

Request Forwarding
Notice how the text displayed in the previous sections' example matches the value of
the value attribute of the checkboxes that were clicked, and not the labels displayed
on the previous page. This might confuse the users. Let's modify the servlet to
change these values so that they match the labels, then forward the request to
another servlet that will display the confirmation message on the browser.

The new version of MultipleValueFieldHandlerServlet is shown next.

package net.ensode.glassfishbook.formhandling;

import java.io.IOException;
import java.util.ArrayList;

Servlet Development and Deployment

[50]

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class MultipleValueFieldHandlerServlet extends HttpServlet
{
 protected void doPost(HttpServletRequest request,
 HttpServletResponse response)
 {
 String[] selectedOptions = request.getParameterValues("options");
 ArrayList<String> selectedOptionLabels = null;

 if (selectedOptions != null)
 {
 selectedOptionLabels = new
 ArrayList<String>(selectedOptions.length);

 for (String selectedOption : selectedOptions)
 {
 if (selectedOption.equals("option1"))
 {
 selectedOptionLabels.add("Option 1");
 }
 else if (selectedOption.equals("option2"))
 {
 selectedOptionLabels.add("Option 2");
 }
 else if (selectedOption.equals("option3"))
 {
 selectedOptionLabels.add("Option 3");
 }
 }
 }

 request.setAttribute("checkedLabels", selectedOptionLabels);

 try
 {

 request.getRequestDispatcher("confirmationservlet").
 forward(request, response);

 }
 catch (ServletException e)
 {
 e.printStackTrace();
 }
 catch (IOException e)
 {
 e.printStackTrace();
 }

 }
}

Chapter 2

[51]

This version of the servlet iterates through the selected options and adds the
corresponding label to an ArrayList of Strings. This ArrayList is then attached to
the request object by calling the request.setAttribute() method. This method is
used to attach any object to the request so that any other code we forward the request
to can have access to it later.

This code uses generics, a feature introduced to the Java language in
JDK 1.5, see http://java.sun.com/j2se/1.5.0/docs/guide/
language/generics.html for details.

After attaching the ArrayList to the request, we then forward the request to the new
servlet in the following line of code:

request.getRequestDispatcher("confirmationservlet").forward(

 request, response);

The String argument to this method must match the value of the <url-pattern>
tag of the servlet in the application's web.xml file.

At this point, control goes to our new servlet. The code for this new servlet is
shown below:

package net.ensode.glassfishbook.requestforward;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.List;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
public class ConfirmationServlet extends HttpServlet
{
 @Override
 protected void doPost(HttpServletRequest request,
HttpServletResponse response)
 {
 try
 {
 PrintWriter printWriter;
 List<String> checkedLabels = (List<String>) request

 .getAttribute("checkedLabels");

 response.setContentType("text/html");
 printWriter = response.getWriter();
 printWriter.println("<p>");
 printWriter.print("The following options were selected:");

Servlet Development and Deployment

[52]

 printWriter.println("
");

 if (checkedLabels != null)
 {
 for (String optionLabel : checkedLabels)
 {
 printWriter.print(optionLabel);
 printWriter.println("
");
 }
 }
 else
 {
 printWriter.println("None");
 }
 printWriter.println("</p>");
 }
 catch (IOException ioException)
 {
 ioException.printStackTrace();
 }
 }
}

This code obtains the ArrayList that was attached to the request by the previous
servlet. This is accomplished by calling the request.getAttribute() method;
the parameter for this method must match the value used to attach the object to
the request.

Once this servlet obtains the list of option labels, it traverses through it and displays
them on the browser.

Chapter 2

[53]

Forwarding a request as described above only works for other resources (servlets
and JSP pages) in the same context as the code doing the forwarding. In simple
terms, the servlet or JSP that we want to forward to must be packaged in the same
WAR file as the code that is invoking the request.getRequestDispatcher().
forward() method. If we need to direct the user to a page in another context (or
even another server), we can do it by redirecting the response object.

Response Redirection
One disadvantage of forwarding a request as described in the previous section is
that requests can only be forwarded to other servlets or JSPs in the same context.
If we need to direct the user to a page on a different context (deployed in another
WAR file in the same server or deployed in a different server) we need to use the
HttpServletResponse.sendRedirect() method.

To illustrate response redirection, let's develop a simple web application that asks
the user to select their favorite search engine, then directs the user to his/her search
engine of choice. The HTML page for this application would look like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Response Redirection Demo</title>
</head>
<body>
<form method="post" action="responseredirectionservlet">

Please indicate your favorite search engine.
<table>
 <tr>
 <td><input type="radio" name="searchEngine"

 value="http://www.google.com">Google</td>

 </tr>

 <tr>

 <td><input type="radio" name="searchEngine"

 value="http://www.msn.com">MSN</td>

 </tr>

 <tr>

 <td><input type="radio" name="searchEngine"

 value="http://www.yahoo.com">Yahoo!</td>

 </tr>

 <tr>

Servlet Development and Deployment

[54]

 <td colspan="2"><input type="submit" value="Submit" /></td>
 </tr>
</table>
</form>
</body>
</html>

The HTML form in this markup code contains three radio buttons; the value for
each of them is the URL for the search engine corresponding to the user's selection.
Notice how the value for the name attribute of each radio button is the same, namely
"searchEngine". The servlet will obtain the value of the selected radio button by
calling the request.getParameter() method and passing the string "searchEngine"
as a parameter, as demonstrated in the code below:

package net.ensode.glassfishbook.responseredirection;

import java.io.IOException;
import java.io.PrintWriter;

import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class ResponseRedirectionServlet extends HttpServlet
{
 @Override
 protected void doPost(HttpServletRequest request,
HttpServletResponse response) throws IOException
 {
 String url = request.getParameter("searchEngine");

 if (url != null)
 {
 response.sendRedirect(url);
 }
 else
 {
 PrintWriter printWriter = response.getWriter();

 printWriter.println("No search engine was selected.");
 }
 }
}

Chapter 2

[55]

By calling request.getParameter("searchEngine"), this code assigns the URL of
the selected search engine to the variable url. Then, (after checking for null, in case
the user clicked on the submit button without selecting a search engine), it directs the
user to the selected search engine by calling response.sendRedirect() and passing
the url variable as a parameter.

The web.xml file for this application should be fairly straightforward and is not
shown (it is part of this book's code download).

After packaging the code and deploying it, we can see it in action by typing the
following URL in the browser: http://localhost:8080/responseredirection/.

After clicking the submit button, the user is directed to their favorite search engine.

Servlet Development and Deployment

[56]

It should be noted that redirecting the response as just illustrated creates a new
HTTP request to the page we are redirecting to; therefore any request parameters
and attributes are lost.

Persisting Application Data across
Requests
In the previous section, we saw how it is possible to store an object in the request by
invoking the HttpRequest.setAttribute() method and how later this object can
be retrieved by invoking the HttpRequest.getAttribute() method. This approach
only works if the request was forwarded to the servlet invoking the getAttribute()
method. If this is not the case, the getAttribute() method will return null.

Chapter 2

[57]

It is possible to persist an object across requests. In addition to attaching an object to
the request object, an object can also be attached to the session object or to the servlet
context. The difference between these two is that objects attached to the session will
not be visible to different users, whereas objects attached to the servlet context are.

Attaching objects to the session and servlet context is very similar to attaching
objects to the request. To attach an object to the session, the HttpServletRequest.
getSession() method must be invoked. This method returns an instance of javax.
servlet.http.HttpSession, we then call the HttpSession.setAttribute()
method to attach the object to the session. The following code fragment illustrates
the process:

protected void doPost(HttpServletRequest request, HttpServletResponse
response)
{
 .
 .
 .
 Foo foo = new Foo(); //theoretical object
 HttpSession session = request.getSession();

 session.setAttribute("foo", foo);

 .
 .
 .
}

We can then retrieve the object from the session by calling the HttpSession.
getAttribute() method.

protected void doPost(HttpServletRequest request, HttpServletResponse
response)
{
 HttpSession session = request.getSession();

 Foo foo = (Foo)session.getAttribute("foo");

}

Notice how the return value of session.getAttribute() needs to be cast to the
appropriate type. This is necessary because the return value of this method is java.
lang.Object.

Servlet Development and Deployment

[58]

The procedure to attach objects to and retrieve objects from the servlet context is very
similar. The servlet needs to call the getServletContext() method (defined in the
class called GenericServlet, which is the parent class of HttpServlet, which in
turn is the parent class of our servlets). This method returns an instance of javax.
servlet.ServletContext, which defines a setAttribute() and a getAttribute()
method. These methods work in the same way as their HttpServletRequest and
HttpSessionResponse counterparts.

The procedure to attach an object to the servlet context is illustrated in the following
code snippet:

protected void doPost(HttpServletRequest request, HttpServletResponse
response)
{
 //The getServletContext() method is defined higher in
 //the inheritance hierarchy.
 ServletContext servletContext = getServletContext();

 Foo foo = new Foo();
 servletContext.setAttribute("foo", foo);
 .
 .
 .
}

The above code attaches the foo object to the servlet context; this object will be
available to any servlet in our application, and will be the same across sessions. It
can be retrieved by calling the ServletContext.getAttribute() method, as is
illustrated next.

protected void doPost(HttpServletRequest request, HttpServletResponse
response)
{
 ServletContext servletContext = getServletContext();

 Foo foo = (Foo)servletContext.getAttribute("foo");

 .
 .
 .
}

This code obtains the foo object from the request context; again a cast is needed
because the ServletContext.getAttribute() method, like its counterparts,
returns an instance of java.lang.Object.

Chapter 2

[59]

Objects attached to the servlet context are said to have a scope of
application. Similarly, objects attached to the session are said to have a
scope of session, and objects attached to the request are said to have a
scope of request.

Summary
This chapter covered how to develop, configure, package, and deploy servlets. We
also covered how to process HTML form information by accessing the HTTP request
object. Additionally, we covered forwarding HTTP requests from one servlet to
another, as well as redirecting the HTTP response to a different server. Lastly, we
discussed how to persist objects in memory across requests by attaching them to the
servlet context and the HTTP session.

JavaServer Pages
In the previous chapter, we saw how to develop Java servlets. Servlets are great for
handling form input, but servlet code that outputs HTML markup to the browser
tends to be cumbersome to write, read, and debug. A better way to send output to
the browser is through JavaServer Pages (JSPs).

The following topics will be covered in this chapter:

Developing our first JSP
Implicit JSP objects
JSPs and JavaBeans
Reusing JSP content
Writing custom tags

Introduction to JavaServer Pages
In the early days, servlets were the only API available to develop server-side web
applications in Java. Servlets had a number of advantages over CGI scripts, which
were prevalent in those days (and to some extent, still are). Some of the advantages
of servlets over CGI scripts included increased performance and enhanced security.

However, servlets also had one major disadvantage: as the HTML code to be
rendered in the browser needed to be embedded in Java code, most servlet code
was very hard to maintain. To overcome these limitations, JavaServer Pages (JSPs)
technology was created. JSPs use a combination of static HTML content and
dynamic content to generate web pages. As the static content is separate from the
dynamic content, JSP pages are a lot easier to maintain than servlets that generate
HTML output.

•

•

•

•

•

JavaServer Pages

[62]

In most modern applications using JSPs, servlets are still used; however, they
typically assume the role of a controller in the Model-View-Controller (MVC) design
pattern, with JSPs assuming the role of the view. As controller servlets have no user
interface, we don't run into the issue of having HTML markup inside Java code.

In this chapter, we will cover how to develop server-side web applications using
JavaServer Pages technology.

Developing Our First JSP
JSPs are basically pages containing both static HTML markup and dynamic content.
Dynamic content can be generated by using snippets of Java code called scriptlets or
by using standard or custom JSP tags. Let's look at a very simple JSP that displays
the current server time in the browser.

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>
<%@ page import="java.util.Date" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Server Date And Time</title>
</head>
<body>
<p>Server date and time: <% out.print(new Date()); %>
</p>
</body>
</html>

To deploy the above JSP, all that needs to be done is to put it in a WAR file. When a
WAR file contains no servlets, the web.xml file is optional. As we mentioned before,
the easiest way to deploy the WAR file is to copy it to [glassfish installation
directory]/glassfish/domains/domain1/autodeploy. After a successful
deployment, pointing the browser to http://localhost:8080/firstjsp/first.
jsp should result in a page like the following:

Chapter 3

[63]

The "Server date and time:" string came for the static text immediately following the
<p> tag in the JSP page. The actual date and time displayed came from the output of
the code between the <% and %> delimiters. We can place any valid Java code between
these two delimiters. Code inside these delimiters is known as a scriptlet. The scriptlet
in the above JSP makes use of the out implicit object. JSP implicit objects are objects
that can be readily used in any JSP, with no need to declare or initialize them. The out
implicit object is an instance of javax.servlet.jsp.JspWriter. It can be thought of
as an equivalent of calling the HttpServletResponse.getWriter() method.

The first two lines in this JSP are JSP page directives. A JSP page directive defines
attributes that apply to the entire JSP page. A JSP page directive can have several
attributes. In this example, the first page directive sets the language, contentType,
charset, and PageEncoding attributes. The second one adds an import statement to
the page.

As can be seen in the example, JSP page directive attributes can be combined in a
single directive, or a separate page directive can be used for each attribute. Using a
separate page directive for each attribute is possible, as well as combining all page
directive attributes in a single page directive.

The following table lists all attributes for the page directive:

Attribute Description Valid Values Default Value
autoFlush Determines whether the

output buffer should be
flushed automatically
when it is full.

true or false true

buffer The output buffer size
in kilobytes.

Nkb where N is an integer
number. "none" is also a
valid value.

8kb

contentType Determines the page's
HTTP response, MIME
type, and character
encoding.

Any valid MIME type
and character encoding
combination

text/html;
charset=
ISO-8859-1

errorPage Indicates to what page
to navigate when
the JSP throws an
exception.

Any valid relative URL to
another JSP.

N/A

extends Indicates the class this
JSP extends.

The fully qualified name for
the JSP's parent class.

N/A

JavaServer Pages

[64]

Attribute Description Valid Values Default Value
import Imports one or more

classes to be used in
scriptlets.

A fully qualified name of a
class to import, or the full
package name + ".*" to import
all necessary classes
from the package (e.g.,
<%@ page import java.
util.*" %>).

N/A

info The value for this
attribute is incorporated
into the compiled JSP.
It can later be retrieved
by calling the page's
getServletInfo()
method.

Any string. N/A

isErrorPage Determines if this page
is an error page.

true or false false

isThreadSafe Determines whether the
page is thread safe.

true or false true

language Determines the scripting
language used in
scriptlets, declarations,
and expressions in the
JSP page.

Any scripting language
that can execute in the Java
Virtual Machine (groovy,
jruby, etc.).

java

pageEncoding Determines the page
encoding, for example,
"UTF-8".

Any valid page encoding. N/A

session Determines whether the
page has access to the
HTTP session.

true or false True

Of the attributes on the table, errorPage, import, and isErrorPage are the most
commonly used. The others have sensible defaults.

When deployed to the application server, JSPs are translated (compiled into)
servlets. The extends attribute of the page directive indicates the generated servlet's
parent class. The value of this attribute must be a subclass of javax.servlet.
GenericServlet.

Although the language attribute can accept any language that can execute in the
Java Virtual Machine, it is extremely rare to use any language other than Java.

Chapter 3

[65]

JSP Implicit Objects
JSP implicit objects are objects that can be used in a JSP without having to be
declared or initialized. They are actually declared and initialized behind the scenes
by the application server when the JSP is deployed.

In the example in the previous section, we used the JSP implicit object out, this object,
for all practical purposes is equivalent to calling the HttpResponse.getWriter() in a
servlet. In addition to the out object, there are several other implicit objects that can be
used in JSP scriptlets. These implicit objects are listed in the following table:

Implicit Object Implicit Object Class Description
application javax.servlet.

ServletContext
Equivalent to calling the
getServletContext() method in
a servlet.

config javax.servlet.ServletConfig Equivalent to invoking the
getServletConfig() method in
a servlet.

exception java.lang.Throwable Only accessible if the page directive's
isErrorPage attribute is set to
true. Provides access to the exception
that was thrown that led to the page
being invoked.

out javax.servlet.jsp.JspWriter Equivalent to the return value
of HttpServletResponse.
getWriter().

page java.lang.Object Provides access to the page's
generated servlet.

pageContext javax.servlet.jsp.
PageContext

Provides several methods for
managing the various web
application scopes (request, session,
application). Refer to the JavaDoc for
PageContext at http://java.
sun.com/javaee/5/docs/
api/javax/servlet/jsp/
PageContext.html.

request javax.servlet.
ServletRequest

Equivalent to the instance of
HttpServletRequest we obtain
as a parameter of the doGet() and
doPost() methods in a servlet.

JavaServer Pages

[66]

Implicit Object Implicit Object Class Description
response javax.servlet.

ServletResponse
Equivalent to the instance of
HttpServletResponse we obtain
as a parameter of the doGet() and
doPost() methods in a servlet.

session javax.servlet.http.
HttpSession

Equivalent to the return value
of the HttpServletRequest.
getSession() method.

The following example JSP illustrates the use of several of the JSP implicit objects:

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<%@page import="java.util.Enumeration"%>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Implicit Objects Demo</title>
</head>
<body>
<p>This page uses JSP Implicit objects to attach objects to the
request, session, and application scopes.

It also retrieves some initialization parameters sent in the web.xml
configuration file.

The third thing it does is get the buffer size from the implicit
response object.

</p>
<p>
<%
 application.setAttribute("applicationAttribute", new String(

 "This string is accessible accross sessions."));

 session.setAttribute("sessionAttribute", new String(

 "This string is accessible accross requests"));

 request.setAttribute("requestAttribute", new String(

 "This string is accessible in a single request"));

 Enumeration initParameterNames =

 config.getInitParameterNames();

 out.print("Initialization parameters obtained ");

 out.print("from the implicit
");

Chapter 3

[67]

 out.println("config object:

");

 while (initParameterNames.hasMoreElements())
 {
 String parameterName =
 (String) initParameterNames.nextElement();
 out.print(parameterName + " = ");
 out.print(config.getInitParameter(

 (String) parameterName));

 out.print("
");
 }

 out.println("
");

 out.println("Implicit object page is of type "

 + page.getClass().getName() + "

");

 out.println("Buffer size is: " + response.getBufferSize()

 + " bytes");

%>
</p>
<p>
 Click here to continue.
 </p>
</body>
</html>

The above JSP utilizes most of the implicit objects available to JSP scriptlets. The first
thing it does is attach objects to the application, session, and request implicit
objects. It then gets all initialization parameters' implicit config objects and displays
their name and values on the browser by using the implicit out object. Next, it
displays the fully qualified name of the implicit page object. Finally, it displays the
buffer size by accessing the implicit response object.

JSP (and servlet) initialization parameters are declared in the application's web.xml
file. For this application, the web.xml looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.
com/xml/ns/j2ee/web-app_2_4.xsd">

 <servlet>
 <servlet-name>ImplicitObjectsJsp</servlet-name>
 <jsp-file>/implicitobjects.jsp</jsp-file>
 <init-param>

 <param-name>webxmlparam</param-name>

JavaServer Pages

[68]

 <param-value>

 This is set in the web.xml file

 </param-value>

 </init-param>

 </servlet>

 <servlet-mapping>
 <servlet-name>ImplicitObjectsJsp</servlet-name>
 <url-pattern>/implicitobjects.jsp</url-pattern>
 </servlet-mapping>
</web-app>

Remember that a JSP gets compiled into a servlet at deployment time. As such, we
can treat it as a servlet in the web.xml file. In order to be able to pass initialization
parameters to a JSP, we must treat it like a servlet, as initialization parameters are
placed between <init-param> and </init-param> XML tags. As shown in this web.
xml file, the parameter name is placed between <param-name> and </param-name>
tags, and the parameter value is placed between <param-value> and </param-
value> tags. A servlet (and a JSP) can have multiple initialization parameters. Each
initialization parameter must be declared inside a separate <init-param> tag.

Notice that in this web.xml file we declared a servlet mapping for our JSP. This was
necessary to allow GlassFish's web container to pass the initialization parameters
to the JSP. As we didn't want the URL of the JSP to change, we used the JSP's actual
URL as the value for the <url-pattern> tag. Had we wanted to access the JSP via a
different URL (not necessarily one ending in .jsp) we could have placed the desired
URL inside the <url-pattern> tag.

At the bottom of implicitobjects.jsp, there is a hyperlink to a second JSP, called
implicitobjects2.jsp. The markup and code for implicitobjects2.jsp looks
like this:

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<%@page import="java.util.Enumeration"%>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Sanity Check</title>
</head>
<body>
<p>This page makes sure we can retrieve the application, session and
request attributes set in the previous page.

Chapter 3

[69]

</p>
<p>applicationAttribute value is:
<%=application.getAttribute("applicationAttribute")%>

sessionAttribute value is:
<%=session.getAttribute("sessionAttribute")%>

requestAttribute value is:
<%=request.getAttribute("requestAttribute")%>

</p>
<p>

The following attributes were found at the application scope:<br/
>

<%
 Enumeration applicationAttributeNames = pageContext

 .getAttributeNamesInScope(pageContext.APPLICATION_SCOPE);

 while (applicationAttributeNames.hasMoreElements())
 {
 out.println(applicationAttributeNames.nextElement() +
 "
");
 }
%>
</p>
<p>This hyperlink points to a JSP that will throw
an exception.</p>
</body>
</html>

In this second JSP, we retrieve the objects that were attached to the application,
session, and request objects. The attached objects are obtained by calling the
appropriate implicit object's getAttribute() method. Notice how all calls to the
getAttribute() method are nested between <%= and %> delimiters. Snippets of code
between these delimiters are called JSP expressions. JSP expressions are evaluated
and their return value is displayed in the browser without having to call the out.
print() method.

This JSP also retrieves the names of all objects attached to the application scope and
displays them in the browser window.

At the bottom of the above JSP there is a hyperlink to a third JSP; this third JSP is
called buggy.jsp. Its only purpose in life is to demonstrate the errorPage attribute
of the page directive, the error attribute of the page directive, and the exception
implicit object; therefore it is not terribly complicated.

JavaServer Pages

[70]

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8" errorPage="error.jsp" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Buggy JSP</title>
</head>
<body>
<p>
This text will never be seen in the browser since the exception will
be thrown before the page renders.
<%
Object o = null;

out.println(o.toString()); //NullPointerException thrown here.
%>
</p>
</body>
</html>

The only thing this JSP does is force a NullPointerException, which will result in
GlassFish's servlet container directing the user to the page declared as the error page
in the errorPage attribute of the page directive. This page is error.jsp; its markup
and code is shown next:

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8" isErrorPage="true"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<%@page import="java.io.StringWriter"%>
<%@page import="java.io.PrintWriter"%>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>There was an error in the application</title>
</head>
<body>
<h2>Exception caught</h2>
<p>Stack trace for the exception is:

<%
 StringWriter stringWriter = new StringWriter();
 PrintWriter printWriter = new PrintWriter(stringWriter);
 exception.printStackTrace(printWriter);
 out.write(stringWriter.toString());
%>
</p>
</body>
</html>

Chapter 3

[71]

Notice how this page declares itself to be an error page by setting the isErrorPage
attribute of the page directive to true. As this page is an error page, it has access
to the exception implicit object. This page simply calls the printStackTrace()
method of the implicit exception object and sends its output to the browser via
the out implicit object. In a real application, a user-friendly error message would
probably be displayed.

As this application consists only of three JSPs, packaging it for deployment simply
consists of putting all the JSPs in the root of the WAR file, and the web.xml file in its
usual location (the WEB-INF subdirectory in the WAR file).

After deploying and pointing the browser to http://localhost:8080/
jspimplicitobjects/implicitobjects.jsp, we should see implicitobjects.
jsp rendered in the browser.

JavaServer Pages

[72]

As you can see, the JSP has a number of "mysterious" initialization parameters,
in addition to the one we set in the application's web.xml file. These additional
initialization parameters are set automatically by GlassFish's web container.

Clicking on the hyperlink at the bottom of the page takes us to
implicitobjects2.jsp.

Notice how the value for the request attribute shows up as null. The reason for this
is that when we clicked on the hyperlink on the previous page, a new HTTP request
was created, therefore any attributes attached to the previous request were lost. Had
we forwarded the request to this JSP, we would have seen the expected value on the
browser window.

Notice how, in addition to the attribute we attached to the application, GlassFish also
attaches a number of other attributes to this implicit object.

Chapter 3

[73]

Finally, clicking on the hyperlink at the bottom of the page takes us to the buggy JSP,
which does not render; instead control is transferred to error.jsp.

Nothing surprising is displayed here; we see the exception's stack trace as expected.

JSPs and JavaBeans
It is very easy to set and retrieve JavaBean properties with JSPs. A JavaBean is a
type of Java class. In order for a class to qualify as a JavaBean, it must have the
following attributes:

1.	 It must have a public constructor taking no arguments.
2.	 All of its variables must be private.
3.	 Its variables must be accessed via getter and setter methods.

Do not confuse JavaBeans with Enterprise JavaBeans, they are not the
same thing. Enterprise JavaBeans are covered in detail in Chapter 9.

All the examples in this section will use the following JavaBean to illustrate JSP and
JavaBean integration.

package net.ensode.glassfishbook.javabeanproperties;

public class CustomerBean
{
 public CustomerBean()

JavaServer Pages

[74]

 {

 }

 String firstName;
 String lastName;

 public String getFirstName()
 {
 return firstName;
 }

 public void setFirstName(String firstName)
 {
 this.firstName = firstName;
 }

 public String getLastName()
 {
 return lastName;
 }

 public void setLastName(String lastName)
 {
 this.lastName = lastName;
 }
}

As you can see, the above class qualifies as a JavaBean because it meets all the
requirements just listed. Notice how setter and getter method names follow naming
conventions. Getter methods start with the word "get" followed by the property
name, setter methods start with the word "set" followed by the property name. The
only difference is that the property name is capitalized in the method names. It is
important to follow these conventions for the JSP and JavaBean integration to work.

JSPs declare that they will use a JavaBean via the <jsp:useBean> tag. JavaBean
properties are set via the <jsp:setProperty> tag, and retrieved via the <jsp:
getProperty> tag.

In JavaBean terminology, a property simply refers to one of the JavaBean's
class variables.

Chapter 3

[75]

The following example illustrates the use of these tags:

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>
<jsp:useBean id="customer"

 class="net.ensode.glassfishbook.javabeanproperties.CustomerBean"

 scope="page"></jsp:useBean>

<jsp:setProperty name="customer" property="firstName" value="Albert"
/>

<jsp:setProperty name="customer" property="lastName" value="Chan" />

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>JavaBean Properties</title>
</head>
<body>
<form>
<table cellpadding="0" cellspacing="0" border="0">
 <tr>
 <td align="right">First Name: </td>
 <td>
 <input type="text" name="firstName"

 value='<jsp:getProperty name="customer"

 property="firstName"/>'>

 </td>
 </tr>
 <tr>
 <td align="right">Last Name: </td>
 <td>
 <input type="text" name="lastName"

 value='<jsp:getProperty name="customer"

 property="lastName"/>'>

 </td>
 </tr>
 <tr>
 <td></td>
 <td><input type="submit" value="Submit"></td>
 </tr>
</table>
</form>
</body>
</html>

JavaServer Pages

[76]

As can be seen in this example, the <jsp:useBean> tag is typically used with three
attributes. The id attribute sets an identifier for the bean so that we can refer to it
later. The class attribute specifies the fully qualified name of the bean, and the
scope attribute specifies the scope of the bean. The bean in this example has a scope
of page. This scope is specific to JSPs and cannot be used with servlets. Objects in this
scope can only be accessed by the JSP that declares them. Other valid values for the
scope attribute are application, session, and request. If an attribute other than
page is specified, the JSP searches for an object attached to the specified scope with a
name matching the specified ID. If it finds it, it uses it; otherwise it attaches the bean
to the specified scope. If the attached object is not an instance of the expected class, a
ClassCastException is thrown.

Bean properties can be set by using the <jsp:setProperty> tag. The name attribute
of this tag identifies the bean we are setting the property for. Its value must match
the value of the id attribute of the <jsp:useBean> tag. The property attribute value
must match the name of one of the bean's properties. The value attribute determines
the value to be assigned to the bean's property; behind the scenes, the property's
setter method is called by the <jsp:setProperty> tag.

The <jsp:getProperty> tag has two attributes, a name attribute, and a property
attribute. The name attribute identifies the bean we are obtaining the value from; its
value must match the id attribute of the bean's <jsp:useBean> tag. The property
attribute identifies what bean property we want; the <jsp:getProperty> invokes
the getter method corresponding to the property specified in its property attribute.

After packaging and deploying this JSP and pointing the browser to
http://localhost:8080/javabeanproperties/beanproperties1.jsp,
we should see a page like the following:

Notice how the form is pre-populated with the bean's properties, this happened
because we embedded the <jsp:getProperty> tags inside the value attribute of the
HTML input tag.

Chapter 3

[77]

In this example, the JSP itself set the bean's properties from hard-coded values
and later accessed them via the <jsp:getProperty> tag. More often than not,
bean attributes are set from request parameters. If we take this JSP and replace the
following code fragment:

<jsp:setProperty name="customer" property="firstName" value="Albert"
/>
<jsp:setProperty name="customer" property="lastName" value="Chan" />

with this one:

<jsp:setProperty name="customer" property="firstName"
 param="fNm" />
<jsp:setProperty name="customer" property="lastName"
 param="lNm" />

the JSP will populate the bean's attributes from request parameters. The only
difference between the modified JSP and the original one is that the value attribute
of the <jsp:setProperty> tag has been replaced with the param attribute. When the
<jsp:setProperty> tag has a param attribute, it looks for a request parameter name
matching its value. If it finds it, it sets the corresponding bean property to the value
of the request parameter.

Redeploying the application and pointing the browser to http://localhost:8080/
javabeanproperties/beanproperties2.jsp?fNm=Albert&lNm=Chang (assuming
the modified JSP was saved as beanproperties2.jsp) should result in the display
of a page identical to the previous screenshot.

If request parameter names match the bean property names, there is no need to
explicitly set each property name to the corresponding request attribute. There is a
shortcut that will set each bean attribute to its corresponding value in the request. If
we modify the JSP once again, this time replacing this code fragment:

<jsp:setProperty name="customer" property="firstName"
 param="fNm" />
<jsp:setProperty name="customer" property="lastName"
 param="lNm" />

with this one:

<jsp:setProperty name="customer" property="*"/>

the <jsp:setProperty> tag will now look for request parameter names
matching bean property names, and set the bean properties to the corresponding
request parameters. Pointing the browser to http://localhost:8080/
javabeanproperties/beanproperties3.jsp?firstName=Albert&lastName=
Chang (assuming the modified JSP was saved as beanproperties3.jsp) we should

JavaServer Pages

[78]

once again see a page like the one in the previous screenshot displayed in the
browser. Notice how in this case the request parameter names match the bean
property names.

Even though the examples in this section dealt exclusively with String properties,
the techniques demonstrated here work with numeric properties as well; property
values from the request or in the <jsp:setProperty> tag are automatically
converted to the appropriate type.

Reusing JSP Content
Most web applications' web pages contain certain areas that are identical across
pages. For example, each page may display a company logo at the top, or a
navigation menu. Copying and pasting the code to generate these common areas
is not very maintainable, because if a change needs to be made to one of them, the
change must be done on every page.

When using JSPs to develop a web application, it is possible to define each of these
areas in a single JSP, then include this JSP as part of other JSPs. For example, we
could have a JSP that renders the site's navigation menu, then have every other JSP
include the navigation menu JSP to render the navigation menu. If the navigation
menu needs to change, the change needs to be done only once; JSPs including the
navigation menu JSP don't need to be changed.

There are two ways a JSP can be included in another JSP. It can be done via the
<jsp:include> tag or via the include directive.

The following example illustrates the use of the include directive to include a JSP as
part of a parent JSP:

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>
 <%! String pageName = "Main"; %>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Main Page</title>
</head>
<body>
<table cellpadding="0" cellspacing="0" border="1" width="100%"
height="100%">

Chapter 3

[79]

 <tr>
 <td width="100">
 <%@ include file="navigation.jspf"%>

 </td>
 <td>This is the main page.</td>
 </tr>
</table>
</body>
</html>

As can be seen in the above example, the include directive is very straightforward
to use. It takes a single attribute called file, the value of which is the file to include.
Notice that the included file in the example has an extension of jspf. This is the
recommended extension for JSP fragments, that is, JSPs that do not render into a
proper HTML page.

Notice, near the top of the markup, the following line:

<%! String pageName = "Main"; %>

This line is a JSP declaration. Any variables (or methods) declared in a JSP
declaration are available to the JSP declaring them and to any JSPs included via the
include directive.

The code and markup for navigation.jspf is shown next.

Application Menu

 Main
 Secondary

Current page: <%= pageName %>

Notice how navigation.jspf accesses the pageName variable declared in the parent
JSP (in order for this to work, any JSP including navigation.jspf must declare a
variable called pageName).

There is a third file called secondary.jsp. This file is almost identical to main.jsp
and is not shown; the only differences between main.jsp and secondary.jsp are
the value of the pageName variable, the page title, and the text inside the second cell
in the table.

JavaServer Pages

[80]

After packaging and deploying this files into a WAR file and pointing the browser to
http://localhost:8080/jspcontentreuse/main.jsp, we should see a page
like this:

The menu at the left-hand side is rendered by navigation.jspf. The main area is
rendered by main.jsp. Clicking on the hyperlink labeled Secondary will take us to
the secondary page, which is virtually identical to the main page.

We admit we are not using very fancy web design. The reason for this
is that we want to keep the HTML as simple as possible, so that we can
focus on the topic at hand.

JSP files included via a page directive are included at compile time, which is when
our JSP is translated into a servlet. This is the reason included JSPs have access to
variables declared in the parent JSP.

When using the <jsp:include> tag, the included JSP is added at run time, therefore
it doesn't have access to any variable declared in the parent JSP.

The <jsp:include> tag has two attributes, a page attribute, which sets the page to
include, and an optional flush attribute, which determines if any existing buffer
should be flushed before reading in the included JSP. Valid values for the flush
attribute are true and false; it defaults to false.

The preceding JSPs can be easily modified to use the <jsp:include> tag. All that
needs to be done is replace the include directive with the equivalent <jsp:include>
tag and of course, remove the JSP expression from navigation.jspf, as it will be
included at run time and it will not have access to it.

Chapter 3

[81]

JSP Custom Tags
JSP technology allows software developers to create custom tags. Custom tags can be
used in JSP along with standard HTML tags. There are several ways of developing
custom tags. In this section, we will discuss the two most popular ways, extending
the javax.servlet.jsp.tagext.SimpleTagSupport class and creating a tag file.

Extending SimpleTagSupport
One way we can create custom JSP tags is by extending the javax.servlet.jsp.
tagext.SimpleTagSupport class. This class provides default implementations of
all methods in the javax.servlet.jsp.tagext.SimpleTag interface plus some
methods not defined in this interface. In most cases, all that needs to be done to
create a custom tag this way is override the SimpleTagSupport.doTag() method.

Let's illustrate this approach with an example. Most HTML forms have an embedded
table containing several rows of labels and input fields. Let's create a JSP custom
tag that will generate each of these rows (to keep things simple, our tag will only
generate text fields):

package net.ensode.glassfishbook.customtags;

import java.io.IOException;
import javax.servlet.jsp.JspContext;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.JspWriter;
import javax.servlet.jsp.tagext.SimpleTagSupport;

public class LabeledTextField extends SimpleTagSupport
{
 private String label;
 private String value = "";
 private String name;

 @Override
 public void doTag() throws JspException, IOException

 {

 JspContext jspContext = getJspContext();

 JspWriter jspWriter = jspContext.getOut();

 jspWriter.print("<tr>");

 jspWriter.print("<td>");

 jspWriter.print("");

 jspWriter.print(label);

 jspWriter.print("");

 jspWriter.print("</td>");

JavaServer Pages

[82]

 jspWriter.print("<td>");

 jspWriter.print("<input type=\"text\" name=\"");

 jspWriter.print(name);

 jspWriter.print("\" ");

 jspWriter.print("value=\"");

 jspWriter.print(value);

 jspWriter.print("\"");

 jspWriter.print("/>");

 jspWriter.print("</td>");

 jspWriter.println("</tr>");

 }

 public String getLabel()
 {
 return label;
 }

 public void setLabel(String label)
 {
 this.label = label;
 }

 public String getName()
 {
 return name;
 }

 public void setName(String name)
 {
 this.name = name;
 }

 public String getValue()
 {
 return value;
 }

 public void setValue(String value)
 {
 this.value = value;
 }
}

Chapter 3

[83]

This class consists of an overriden version of the doTag() method and several
attributes. Our doTag() method obtains a reference to an instance of javax.
servlet.jsp.JspWriter by the getJSPContext() method. This method is defined
in the tag's parent class and returns an instance of javax.servlet.jsp.JspContext.
We then invoke the getOut() method of jspContext. This method returns an
instance of javax.servlet.jsp.JspWriter that can be used to send output to the
browser via its print() and println() methods. The rest of the doTag() method
basically sends output to the browser via these two methods.

Notice how some of the calls to jspWriter.print() in the doTag() method take
instance variables as their parameter. These attributes are set by the JSP containing
the tag via the tag's Tag Library Descriptor file.

In order to be able to use custom tags in our JSPs, a Tag Library Descriptor (TLD) file
must be created. The TLD tag for the above custom tag is shown next.

<taglib
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee web-
jsptaglibrary_2_1.xsd"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="2.1">

 <tlib-version>1.0</tlib-version>
 <uri>DemoTagLibrary</uri>

 <tag>
 <name>labeledTextField</name>
 <tag-class>
 net.ensode.glassfishbook.customtags.LabeledTextField
 </tag-class>
 <body-content>empty</body-content>
 <attribute>
 <name>label</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>value</name>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>name</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>
</taglib>

JavaServer Pages

[84]

A TLD file must contain a <tlib-version> element, which indicates the tag library
version; it must also contain a <uri> element. The <uri> element is used in the
JSP containing the tag. It is used to uniquely identify the tag library. Finally, and
most importantly, a TLD file must contain one or more <tag> elements. TLD files
must be placed in the WEB-INF directory of the application's WAR file or one of its
subdirectories. As is illustrated in the preceding example TLD file, the <tag> element
contains several subelements:

We are only covering the most commonly used elements of a TLD file. To
see the complete list of TLD file elements, refer to the JSP 2.1 specification
at http://jcp.org/aboutJava/communityprocess/final/
jsr245/index.html.

A <name> element that assigns a logical name to the custom tag
A <tag-class> element that identifies the fully qualified name for the
custom tag
One or more <attribute> elements, which define attributes for the
custom tag

The <attribute> element in turn can contain a number of subelements.

A <name> element defining the name of the attribute. The value of this
element must match the name of one of the tag's instance variables with a
corresponding setter method.
An optional <required> element indicating passing a value for the attribute
if required. If this element is set to true and no value is sent to the attribute
in the JSP, the page will fail to compile. The default value for this element
is false.
An optional <rtexprvalue> tag indicating if the attribute can contain a
run-time expression as its value. If this element is set to true, then the
tag will accept Unified Expression Language expressions as its value. The
Unified Expression Language is discussed in detail in the next section.

Once we have the tag code and TLD, we are ready to use the tag in a JSP.

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>
<%@taglib prefix="d" uri="DemoTagLibrary"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

•

•

•

•

•

•

Chapter 3

[85]

<title>Custom Tag Demo</title>
</head>
<body>
<form>
<table>
 <d:labeledTextField label="Line 1" name="line1" value="This is line
1"></d:labeledTextField>

 <d:labeledTextField label="Line 2" name="line2"></d:
labeledTextField>

 <d:labeledTextField label="City" name="city"></d:labeledTextField>

 <d:labeledTextField label="State" name="state"></d:labeledTextField>

 <d:labeledTextField label="Zip" name="zip"></d:labeledTextField>

 <tr>
 <td></td>
 <td><input type="submit" value="Submit"></td>
 </tr>
</table>
</form>
</body>
</html>

The above JSP uses our custom tag to generate a rudimentary address data entry
form. The first thing we should notice about this JSP is the use of the taglib
directive. This directive lets the JSP know that we will be using a custom tag library.
The uri attribute of the taglib directive must match the value of the <uri> element
in the tag library's TLD file. The value of the prefix attribute of the taglib is
prepended before the name of any custom tag from the library we use. In the above
example, all <d:labeledField> attributes are uses of the custom tag we have
developed. The d before the : in each of those tags corresponds to the value of the
prefix attribute.

The next thing that should catch our eye in the above example is the usage of the
custom tag itself. Notice how every time we use the custom tag, we set a value for its
label and name attributes. We must do this because these attributes were declared
as required in the tag's TLD file. Only once did we set the value of the tag's value
attribute; this is OK as this tag was not declared as required. The values we set for
the tag's attributes are automatically used to set the values of the tag's Java class
instance variables. The name of the attribute matches the corresponding instance
variable. Behind the scenes, the tag's class setter method for the appropriate instance
variable is called.

JavaServer Pages

[86]

After we package and deploy the JSP, custom tag code, and TLD file in a WAR
file and deploy it, we should see the JSP render in the browser as displayed in the
following screenshot:

Notice how only the first text field has been prepopulated. This is because it was the
only one we set the value attribute for.

If we look at the generated HTML markup from our JSP, we can see the markup that
was actually generated from our custom tag.

<table>
 <tr><td>Line 1</td><td><input type="text" name="line1"
value="This is line 1"/></td></tr>

 <tr><td>Line 2</td><td><input type="text" name="line2"
value=""/></td></tr>

 <tr><td>City</td><td><input type="text" name="city"
value=""/></td></tr>

 <tr><td>State</td><td><input type="text" name="state"
value=""/></td></tr>

 <tr><td>Zip</td><td><input type="text" name="zip"
value=""/></td></tr>

 <tr>
 <td></td>

 <td><input type="submit" value="Submit"></td>
 </tr>
</table>

For simplicity and brevity, only a portion of the generated markup is shown. All
highlighted lines were generated by the custom tag.

Chapter 3

[87]

Using Tag Files to Create Custom JSP Tags
As was shown in the previous section, creating a custom tag by extending the
SimpleTagSupport class involves writing some Java code to generate HTML
markup; code to accomplish this is usually hard to write and hard to read. An
alternative way of creating custom JSP tags is by using tag files. This alternative
method does not involve writing any Java code.

A tag file is very similar to a JSP. Tag filenames must end with a .tag extension and
tag files must be placed in a subdirectory called tags under the WAR file's WEB-INF
directory. The following tag file generates a complete (and less rudimentary) address
input field.

<%@ tag language="java"%>

<%@attribute name="addressType" required="true"%>

<jsp:useBean id="address" scope="request"
 class="net.ensode.glassfishbook.customtags.AddressBean" />
<table cellpadding="0" cellspacing="0" border="0">
 <tr>

 <td align="right" width="70">Line 1 </td>

 <td><input type="text" name="${addressType}_line1" size="30"

 maxlength="100" value="${address.line1}"></td>

 </tr>

 <tr>

 <td align="right">Line 2 </td>

 <td><input type="text" name="${addressType}_line2" size="30"

 maxlength="100" value="${address.line2}"></td>

 </tr>

 <tr>

 <td align="right">City </td>

 <td><input type="text" name="${addressType}_city" size="30"

 value="${address.city}"></td>

 </tr>

 <tr>

 <td align="right">State </td>

 <td><select name="${addressType}_state">

 <option value=""></option>

 <option value="AL"

 <% if(address.getState().equals("AL")) out.print (" selected
"); %>>Alabama</option>

 <option value="AK"

 <% if(address.getState().equals("AK")) out.print (" selected
"); %>>Alaska</option>

JavaServer Pages

[88]

 <option value="AZ"

 <% if(address.getState().equals("AZ")) out.print (" selected
"); %>>Arizona</option>

 <option value="AR"

 <% if(address.getState().equals("AR")) out.print (" selected
"); %>>Arkansas</option>

 <option value="CA"

 <% if(address.getState().equals("CA")) out.print (" selected
"); %>>California</option>

 <option value="CO"

 <% if(address.getState().equals("CO")) out.print (" selected
"); %>>Colorado</option>

 <option value="CT"

 <% if(address.getState().equals("CT")) out.print (" selected
"); %>>Conneticut</option>

 <option value="DC"

 <% if(address.getState().equals("DC")) out.print (" selected
"); %>>District

 of Columbia</option>

 <option value="FL"

 <% if(address.getState().equals("FL")) out.print (" selected
"); %>>Florida</option>

 </select></td>

 </tr>

 <tr>

 <td align="right">Zip </td>

 <td><input type="text" name="${addressType}_zip" size="5"

 value="${address.zip}"></td>

 </tr>

</table>

As can be seen in the example, a tag file is very similar to a JSP file. Just like a JSP, it
can contain scriptlets and set and get JavaBean properties. One difference between
tag files and JSPs is that tag files use a tag directive instead of the page directive. The
most commonly used attribute of the tag directive is the import attribute, which,
just like in the JSP page directive, is used to import individual classes or packages to
be used in the tag file.

Tag files can have an attribute directive, which generates an attribute that can
be set by the parent JSP file. The above example creates a required attribute called
addressType.

Chapter 3

[89]

Notice that the value for the name attribute of each input field in the example
tag file contains text like the following: ${addressType}_line1. The first part
of this string (${addressType}) is a special notation to obtain the value of the
addressType attribute. This notation can also be used to obtain values of JavaBean
properties; the syntax to obtain JavaBean properties using this notation is ${<bean
name>.<property name>}. The value attribute of each input field in the example
uses this notation to obtain the value of a property of the address bean. The address
bean is a simple JavaBean declaring several attributes along with their corresponding
setter and getter methods.

The ${} notation is part of the Unified Expression Language, a new
expression language for the JSP 2.1 specification. This notation is
compatible with the JSP expression language introduced in JSP 2.0.
However, the Unified Expression Language also supports the #{} notation;
this new notation is not compatible with previous versions of the JSP
specification. The #{} notation will be covered in detail in Chapter 6.

As can be seen in the example, tag files can contain scriptlets. The scriptlets in the
example compare the value of the state attribute in the state bean to each option in
the select element, then set the appropriate element to be selected (for simplicity and
brevity, only a small subset of all states was used).

Using a custom tag defined in a tag file is almost identical to using a tag defined
using Java code:

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>
<%@ taglib prefix="ct" tagdir="/WEB-INF/tags"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Custom Tag Demo</title>
</head>
<body>
<form>
<h3>Shipping Address</h3>
<ct:address addressType="shipping" />

</body>
</html>

JavaServer Pages

[90]

Notice how the taglib directive is used to import the tag library into the JSP, but
in this case, instead of using a uri attribute, a tagdir attribute is used to indicate
the location of the tag library. All tag files in the same directory are implicitly part
of a tag library; no TLD file is necessary. However, it is possible to add a TLD for
a tag library composed of tag files. The TLD for such a tag library must be named
implicit.tld and it must be placed in the same directory as the tag files (WEB-INF/
tags in the preceding example; tag libraries must be placed in this directory or any
subdirectory of the tags directory).

In order for this JSP to work properly, an instance of net.ensode.glassfishbook.
customtags.AddressBean must be attached to the request. The following servlet
will create an instance of this class, populate some of its fields, and forward the
request to the JSP.

package net.ensode.glassfishbook.customtags;

import java.io.IOException;
import java.io.PrintWriter;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class CustomTagDemoServlet extends HttpServlet
{
 @Override
 protected void doGet(HttpServletRequest request, HttpServletResponse
response)
 {
 AddressBean addressBean = new AddressBean();

 addressBean.setLine1("43623 Park Ridge Ct");

 addressBean.setCity("Orlando");

 addressBean.setState("FL");

 addressBean.setZip("00303");

 request.setAttribute("address", addressBean);

 try
 {
 request.getRequestDispatcher(

 "customtagdemo2.jsp").forward(request,response);

 }
 catch (ServletException e)
 {
 e.printStackTrace();

Chapter 3

[91]

 }
 catch (IOException e)
 {
 e.printStackTrace();
 }
 }

Of course, a real application would probably obtain this information from a
database. This simple example just instantiates the bean and populates it with some
arbitrary attributes.

After packaging the above JSP and tag file in a WAR file, deploying the WAR file,
and pointing the browser to the servlet's URL (as defined in the <servlet-mapping>
element of the application's web.xml file), we should see a page like the following:

Unified Expression Language
In the previous section, we saw how the Unified Expression Language can be used
to retrieve property values from JavaBeans. When JavaBeans' properties are accessed
this way, GlassFish's web container looks for a JavaBean attached with the given
name to the page , request, session, and application scopes, in that order. It uses the
first one found invoke the getter method corresponding to the property we want
to obtain.

If we know to what scope the bean we want is attached, we can obtain it from that
scope directly as JSP expressions have access to the JSP implicit objects. In next
example, we attach several instances of a JavaBean called CustomerBean to the
different scopes. Before illustrating the JSP, let's take a look at the source code for
this bean:

JavaServer Pages

[92]

package net.ensode.glassfishbook.unifiedexprlang;

public class CustomerBean
{

 public CustomerBean()
 {

 }

 public CustomerBean(String firstName, String lastName)
 {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 private String firstName;
 private String lastName;

 public String getFirstName()
 {
 return firstName;
 }

 public void setFirstName(String firstName)
 {
 this.firstName = firstName;
 }

 public String getLastName()
 {
 return lastName;
 }

 public void setLastName(String lastName)
 {
 this.lastName = lastName;
 }

 @Override
 public String toString()
 {
 StringBuffer fullNameBuffer = new StringBuffer();

 fullNameBuffer.append(firstName);
 fullNameBuffer.append(" ");
 fullNameBuffer.append(lastName);

 return fullNameBuffer.toString();
 }

}

Chapter 3

[93]

This is a fairly simple JavaBean consisting of two properties and their corresponding
setter and getter methods. In order for this class to qualify as a JavaBean, it must
have a public constructor that takes no arguments. In addition to that constructor,
we added a convenience constructor that takes two parameters to initialize the bean's
properties. Additionally, the class overrides the toString() method so that its
output is the customer's first and last names.

As we mentioned before, the following JSP obtains instances of CustomerBean from
the different scopes through the Unified Expression Language and outputs the
corresponding output to the browser window.

Before this JSP is executed, all instances of CustomerBean must be
attached to the corresponding scope. We wrote a servlet that does this
and then forwards the request to the JSP. For brevity, this servlet is not
shown but it is available as part of this book's code download.

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>

<jsp:useBean scope="page" id="customer6"

class="net.ensode.glassfishbook.unifiedexprlang.CustomerBean" />

<jsp:setProperty name="customer6" property="firstName" value="David"
/>
<jsp:setProperty name="customer6" property="lastName"
 value="Heffelfinger" />

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Unified Expression Language Demo</title>
</head>
<body>
Customer attached to the application Scope:
${applicationScope.customer1}

Customer attached to the session scope:
${sessionScope.customer2.firstName} ${sessionScope.customer2.lastName}

Customer attached to the request scope:
${requestScope.customer3}

JavaServer Pages

[94]

Customer attached to the page scope:
${pageScope.customer6}

List of customers attached to the session:

${sessionScope.customerList[0]}

${sessionScope.customerList[1].firstName}

${sessionScope.customerList[1].lastName}

</body>
</html>

The first highlighted line in this JSP looks for a bean attached to the application scope
and with a name of customer1. As we aren't referencing any of the bean's properties,
the bean's toString() method is invoked at that point.

The next two highlighted expressions look for a bean attached to the session scope
with a name of customer2. In this case, we are accessing individual properties; the
first expression accesses the firstName property, the second expression accesses
the lastName property. Behind the scenes, Glassfish's web container invokes the
corresponding getter method for each property.

The next two highlighted lines obtain instances of CustomerBean from the request
and page scopes, respectively. Again as we aren't accessing individual properties, the
bean's toString() method is invoked.

The last three highlighted lines illustrate a very nice feature of the Unified Expression
Language. In this case, instances of CustomerBean were not attached to the session
directly. Instead, an ArrayList containing instances of CustomerBean was attached
to the session. This ArrayList was attached with a name of customerList. As can
be seen in these three lines, we can access individual elements of the ArrayList by
placing the element number in brackets, similar to what we would do with an array
in regular Java code. This technique, by the way, also works with arrays, as well as
any other class implementing the java.util.Collection interface.

Chapter 3

[95]

After packaging this JSP into a WAR file, deploying it, and pointing the browser to
the appropriate URL, we should see it rendered in the browser.

In this particular case, the toString() method outputs the customer's first and
last names. Therefore the output is indistinguishable from displaying these two
properties next to each other.

Of course, the techniques shown in the example work on every scope. We can
access a bean attached to any scope by not specifying any properties. Similarly, we
can access bean properties on any scope and, of course, we can access individual
elements of a collection or array attached to any scope.

Summary
This chapter covered a lot of ground. We talked about how to develop and deploy
simple JSPs. We also covered how to access implicit objects like request, session,
etc. from JSPs. Additionally, we covered how to set and get the values of JavaBean
properties via the <jsp:useBean> tag. In addition to that, we covered how to include
a JSP into another JSP at run time via the <jsp:include> tag, and at compilation
time via the JSP include directive. We also covered how to write custom JSP tags by
extending javax.servlet.jsp.tagext.SimpleTagSupport or by writing tag files.
Finally, we covered how to access JavaBeans and their properties via the Unified
Expression Language.

Database Connectivity
Any non-trivial Java EE application will persist data to a relational database. In this
chapter, we will cover how to connect to a database and perform CRUD operations
(Create, Read, Update, Delete). There are two ways a Java EE application can interact
with a relational database: through the Java Database Connectivity (JDBC) API or
through the Java Persistence API (JPA). Both of these approaches will be discussed
in this chapter.

The topics covered in this chapter include:

Retrieving data from a database through JDBC
Inserting data into a database through JDBC
Updating data in a database through JDBC
Deleting data in a database through JDBC
Retrieving data from a database through JPA
Inserting data into a database through JPA
Updating data in a database through JPA
Deleting data in a database through JPA

The CustomerDB Database
Examples in this chapter will use a database called CUSTOMERDB. This database
contains tables to track customer and order information for a fictitious store. The
database uses JavaDB for its RDBMS, as it comes bundled with GlassFish.

A script is included with this book's code download to create this database and
pre-populate some of its tables. Instructions on how to execute the script and add a
connection pool and datasource to access it are included in the download as well.

•

•

•

•

•

•

•

•

Database Connectivity

[98]

The schema for the CUSTOMERDB database is depicted in the following diagram.

TELEPHONE_TYPES
TELEPHONE_TYPES_ID INTEGER(1) NOT NULL (PK)
TELEPHONE_TYPE CD CHAR(1) NULL
TELEPHONE_TYPES_TEXT VARCHAR(20) NULL

US_STATES
US_STATES_ID INTEGER(10) NOT NULL (PK)
US_STATES_CD CHAR(2) NOT NULL
US_STATES_NM VARCHAR(30) NOT NULL

TELEPHONES
TELEPHONE_ID INTEGER(10) NOT NULL (PK)
TELEPHONE_TYPE_ID INTEGER (10) NULL (FK)
CUSTOMER_ID INTEGER(10) NULL (FK)
TELEPHONE_NUMBER CHAR(12) NULL

ORDER_ITEMS
ORDER_ID INTEGER(10) NULL (FK)
ITEM_ID INTEGER(10) NULL (FK)
ITEM_QTY INTEGER(10) NULL

ITEMS
ITEM_ID INTEGER(10) NOT NULL (PK)
ITEM_NUMBER VARCHAR(10) NULL
ITEM_SHORT_DESC VARCHAR(100) NULL
ITEM_LONG_DESC VARCHAR(500) NULL

ADDRESS_TYPES
ADDRESS_TYPE_ID INTEGER(10) NOT NULL (PK)
ADDRESS_TYPE_CODE CHAR(1) NULL
ADDRESS_TYPE_TEXT VARCHAR(20) NULL

ADDRESSES
ADDRESSES_ID INTEGER(10) NOT NULL (PK)
ADDRESSES_TYPE_ID INTEGER(10) NULL (FK)
CUSTOMER_ID INTEGER(10) NULL (FK)
ADDR_LINE_1 VARCHAR(100) NULL
ADDR_LINE_2 VARCHAR(100) NULL
CITY VARCHAR(100) NULL
US_STATE_ID INTEGER(10) NULL (FK)
ZIP CHAR(5) NULL

CUSTOMER
CUSTOMER_ID INTEGER(10) NOT NULL (PK)
FIRST_NAME VARCHAR(20) NULL
LAST_NAME VARCHAR(20) NULL
EMAIL VARCHAR(30) NULL

ORDERS
ORDER_ID INTEGER(10) NOT NULL (PK)
CUSTOMER_ID INTEGER(10) NULL(FK)
ORDER_NUMBER VARCHAR(10) NULL
ORDER_DESCRIPTION VARCHAR(200) NULL

LOGIN_INFO
LOGIN_INFO_ID INTEGER(10) NOT NULL (PK)
CUSTOMER_ID INTEGER(10) NULL (FK)
LOGIN_NAME VARCHAR(10) NULL
PASSWORD VARCHAR(15) NULL

As can be seen in the diagram, the table contains tables to store customer information
like name, address, and email address. It also contains tables to store order and
item information.

The ADDRESS_TYPES table will store values like "Home", "Mailing", and "Shipping",
to distinguish the type of address in the ADDRESSES table, similarly, the
TELEPHONE_TYPES table stores the values "Cell", "Home", and "Work". These two
tables are pre-populated when creating the database, as well as the US_STATES table.

For simplicity's sake, our database only deals with U.S. Addresses.

Chapter 4

[99]

JDBC
 The Java Database Connectivity (JDBC) API is the standard API used for Java
applications to interact with a database. Although JDBC is not part of the Java EE
specification, it is used very frequently in Java EE applications.

JDBC allows us to send queries to a database to do selects, inserts, updates, and
deletes. The most common way of interacting with a database through JDBC is
through the java.sql.PreparedStatement interface. Using prepared statements
through this interface offers a number of benefits over using standard JDBC
statement objects. Some of the benefits of prepared statements are:

Prepared statements are compiled into the RDBMS the first time they are
executed, therefore increasing subsequent performance.
Prepared statements are immune to SQL injection attacks.
Prepared statements free us from explicitly having to add single quotes (') to
our SQL statements to handle character values.

The java.sql.PreparedStatement interface has two methods that are very
frequently used to send queries to the database. These two methods are
executeQuery() and executeUpdate(). The executeQuery() method is used
to issue select statements to the database and returns an instance of java.sql.
ResultSet containing the rows returned from the query. The executeUpdate()
method is used to issue insert, update, and delete statements to the database; it
returns an int value corresponding to the number of rows affected by the query.
In the following sections, we illustrate database interaction through the above
two methods.

Retrieving Data from a Database
As we mentioned in the previous section, the executeQuery() method of the
java.sql.PreparedStatement interface is used to send select statements to the
database and retrieve data from it. The following example code illustrates this process.

package net.ensode.glassfishbook.jdbcselect;

import java.io.IOException;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.util.ArrayList;

import javax.naming.InitialContext;
import javax.naming.NamingException;

•

•

•

Database Connectivity

[100]

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.sql.DataSource;

public class JDBCSelectServlet extends HttpServlet
{
 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response) throws
 ServletException, IOException
 {
 String sql = "select us_state_nm, " +

 "us_state_cd from us_states order by us_state_nm";

 ArrayList<UsStateBean> stateList =
 new ArrayList<UsStateBean>();

 try
 {
 InitialContext initialContext = new InitialContext();

 DataSource dataSource = (DataSource) initialContext

 .lookup("jdbc/__CustomerDBPool");

 Connection connection = dataSource.getConnection();

 PreparedStatement preparedStatement =

 connection.prepareStatement(sql);

 ResultSet resultSet = preparedStatement.executeQuery();

 while (resultSet.next())

 {

 stateList.add(new

 UsStateBean(resultSet.getString("us_state_nm"),

 resultSet.getString("us_state_cd")));

 }

 resultSet.close();

 preparedStatement.close();

 connection.close();

 request.setAttribute("stateList", stateList);

 request.getRequestDispatcher("us_states.jsp").
 forward(request, response);
 }
 catch (NamingException namingException)

Chapter 4

[101]

 {
 namingException.printStackTrace();
 }
 catch (SQLException sqlException)
 {
 sqlException.printStackTrace();
 }
 }
}

In this servlet, we create a String containing the select statement we will be
sending to the database.

We then create an instance of javax.naming.InitialContext; this instance
is then used in a JNDI (Java Naming and Directory Interface) lookup for the
javax.sql.DataSource corresponding to the database we wish to connect to.
This is accomplished by calling the InitialContext.lookup() method; the String
argument to this method must match the name of the datasource we set
up in GlassFish (refer to Chapter 1). This method returns an instance of
java.lang.Object; its return value must be cast to the appropriate type
(javax.sql.DataSource, in this case).

Once we obtain a reference to the DataSource object by performing a JNDI
lookup, we can obtain a connection from the connection pool by invoking the
getConnection() method defined in the javax.sql.DataSource interface. This
method returns an instance of java.sql.Connection.

Once we get a connection from a connection pool, we obtain an instance of a
class implementing the java.sql.PreparedStatement interface by invoking the
prepareStatement() method on the instance of java.util.Connection that we
obtained in the previous step. The preparedStatement() method takes a String
containing the SQL query as its sole argument.

Once we get an instance of a class implementing java.sql.PreparedStatement,
we can finally query the database by invoking its executeQuery() method. The
PreparedStatement.executeQuery() method returns an instance of a class
implementing the java.sql.ResultSet interface; this instance contains the results
of our query.

The servlet then iterates through the result set and populates an ArrayList with
instances of a JavaBean of type net.ensode.glassfishbook.jdbcselect.
UsStateBean.

Finally, we close the result set and the prepared statement by invoking their close()
methods, and the connection is released back to the connection pool by calling the
close() method in the java.sql.Connection instance that we were using.

Database Connectivity

[102]

Calling the close() method in the connection does not actually close
the collection; it is released back to the connection pool so that other
applications can use it.

The previously populated ArrayList is then attached to the request and the request
is forwarded to a JSP called us_states.jsp.

For brevity the sources for UsStateBean.java and us_states.jsp
are not shown as these files don't illustrate anything we haven't seen
before; both files are part of this book's code download.

After packaging the code in a WAR file, deploying, and pointing the browser to the
appropriate URL, we should see the following page rendered in the browser:

All the U.S. state data displayed in the page were retrieved from the database.

Chapter 4

[103]

As can be seen in the example, the ResultSet interface has a next() method. This
method returns a Boolean indicating if the result set has more rows. An instance of a
class implementing ResultSet has a cursor pointing to the current row. Before any
calls to the next() method, the cursor is positioned before the first row. When the
next() method is called the first time, the cursor points to the first row in the result
set. Subsequent calls to the next() method move the cursor to the next row. When
the cursor is pointing to the last row in the ResultSet, a call to next() will return
false, indicating that there are no more rows in the ResultSet.

The ResultSet.next() method is commonly used as the condition in a while loop.
The loop will execute until this method returns false. Inside the loop operations
can be done on the current row in the result set. The example uses this technique
to populate a simple JavaBean with the values for the current row. As can be
seen in the code, the ResultSet interface contains a method called getString().
The getString() method returns the value of the column indicated by it's sole
parameter, which is a String corresponding to the column we would like to obtain
the value for.

In addition to the getString() method, the ResultSet interface contains a series
of methods for obtaining other types of data. The following table illustrates the most
commonly used ones (for the complete list, refer to the JavaDoc documentation for the
ResultSet interface at http://java.sun.com/javase/6/docs/api/index.html).

Method Name Return Type
getBoolean() boolean
getDate() java.sql.Date
getDouble() double
getFloat() float
getInt() int
getLong() long
getShort() short
getString() java.lang.String
getTime() java.sql.Time
getTimeStamp() java.sql.Timestamp

There are two overloaded versions of each of the methods listed in the table. One
version takes a String indicating the column name as a parameter; the other version
takes an int indicating the position of the column in the query. For example, in the
following query:

select column1, column2, column3 from table

Database Connectivity

[104]

The column called column1 has a position of 1, column2 has a position of 2, and
column3 has a position of 3. Using the version of this methods taking an int usually
results in code that is harder to read and understand than using the version taking a
String, therefore its usage is discouraged.

The PreparedStatement instance, obtained by calling Connection.
prepareStatement(), contains not just an SQL statement but a precompiled SQL
statement. An SQL statement is given to the PreparedStatement instance and this
SQL statement is sent to the RDBMS for compilation. This means that when the
PreparedStatement is executed, the RDBMS can run the PreparedStatement SQL
statement without compiling it and the subsequent calls for execution are faster.
Although this is nice for static queries like the one in this example, where it really
shines is when queries are created dynamically by passing parameters to them. The
following example is a modified version of the earlier servlet illustrating this concept:

package net.ensode.glassfishbook.jdbcselect;

import java.io.IOException;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.util.ArrayList;

import javax.annotation.Resource;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class JDBCSelectServlet2 extends HttpServlet
{
 @Resource(name = "jdbc/__CustomerDBPool")

 private javax.sql.DataSource dataSource;

 @Override
 protected void doGet(HttpServletRequest request, HttpServletResponse
 response)throws ServletException, IOException
 {
 String sql = "select us_state_nm, us_state_cd " +

 "from us_states where us_state_nm like ? " +

 "or us_state_nm like ? order by us_state_nm";

 ArrayList<UsStateBean> stateList =
 new ArrayList<UsStateBean>();

 try
 {
 Connection connection = dataSource.getConnection();

Chapter 4

[105]

 PreparedStatement preparedStatement =
 connection.prepareStatement(sql);

 preparedStatement.setString(1, "North%");

 preparedStatement.setString(2, "South%");

 ResultSet resultSet = preparedStatement.executeQuery();

 response.setContentType("text/html");

 while (resultSet.next())
 {
 stateList.add(new
 UsStateBean(resultSet.getString("us_state_nm"),
 resultSet.getString("us_state_cd")));
 }

 resultSet.close();
 preparedStatement.close();
 connection.close();

 request.setAttribute("stateList", stateList);

 request.getRequestDispatcher("
 us_states.jsp").forward(request, response);
 }
 catch (SQLException sqlException)
 {
 sqlException.printStackTrace();
 }
 }
}

In this version of the servlet, we modified the SQL query to limit the result set
according to some parameters. Notice the question marks in the SQL statement.
These question marks are placeholders for query parameters and are not actually
sent to the database.

In the above example, the setString() method of the PreparedStatement interface
is used to substitute the query parameters with the actual values that will be sent to
the database. This method takes two arguments; the first one is the parameter index
for the substitution; the second one is the value to use as a substitute. After replacing
the parameters with the values, the query in the above code will retrieve data for all
states whose names start with the word "North" or start with the word "South".

Notice that, unlike with arrays or collections, the index of the first
parameter is 1, not 0.

Database Connectivity

[106]

After compiling the code, packaging in a WAR file, and deploying it, and pointing
the browser to its URL, we should see a page displaying the following table in
the browser:

In addition to the setString() method, the PreparedStatement interface contains
many similar methods that allow us to set parameters of different types. The
following table illustrates the most commonly used ones (for the complete list,
refer to the JavaDoc documentation for the PreparedStatement interface at
http://java.sun.com/javase/6/docs/api/index.html)

PreparedStatement Method Name
setBoolean(int parameterIndex, boolean b)
setDate(int parameterIndex, java.sql.Date d)
setDouble(int parameterIndex, double d)
setFloat(int parameterIndex, float f)
setInt(int parameterIndex, int i)
setLong(int parameterIndex, long l)
setShort(int parameterIndex, short s)
setString(int parameterIndex, String s)
setTime(int parameterIndex, java.sql.Time t)
setTimeStamp(int parameterIndex, java.sql.TimeStamp t)

In all of the above methods, the first argument defines the parameter index (starting
with 1) and the second argument contains the value for the parameter.

In addition to modifying the query to accept parameters, we made an additional,
unrelated change to the servlet. Instead of creating an instance of javax.naming.
InitialContext and performing a JNDI lookup to obtain a reference to the
DataSource, we used dependency injection to obtain this instance.

Chapter 4

[107]

Dependency Injection is a design pattern in which an object's
dependencies are injected at run time by a container. This design pattern
was made popular in the Java world by the Spring framework. Java EE 5
uses the @Resource annotation to implement the pattern.

We accomplished this by moving the declaration of the dataSource object out of
the doGet() method and making it a field. We then decorated it with the @Resource
annotation. The @Resource annotation has an element called name; this element is
used to indicate the JNDI name of the resource we want to obtain.

The @Resource annotation can be used to look up any kind of resources available
through JNDI, not only DataSources.

Dependency injection is a new feature of Java EE 5, therefore applications taking
advantage of this new feature cannot be deployed in application servers that don't
support this version of the specification.

Modifying Database Data
In the previous section, we saw how we can use the executeQuery() method of
the java.sql.PreparedStatement interface to read data from the database. In this
section, we will see how we can use the executeUpdate() method of this interface
to insert, update, or delete data in the database. The executeUpdate() method is
illustrated in the following example:

package net.ensode.glassfishbook.jdbcupdate;

import java.io.IOException;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.SQLException;

import javax.annotation.Resource;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.sql.DataSource;

public class JdbcUpdateServlet extends HttpServlet
{
 @Resource(name = "jdbc/__CustomerDBPool")
 private DataSource dataSource;

 @Override
 protected void doGet(HttpServletRequest request,

Database Connectivity

[108]

 HttpServletResponse response)
 throws ServletException, IOException
 {
 String insertCustomerSql = "insert into " +

 "customers (customer_id, first_name, " +

 "last_name, email) values (?,?,?,?)";

 String updateCustomerLastNameSql = "update customers " +

 "set last_name = ? where customer_id = ?";

 String deleteCustomerSql = "delete from customers " +

 "where customer_id = ?";

 PreparedStatement insertCustomerStatement;
 PreparedStatement updateCustomerLastNameStatement;
 PreparedStatement deleteCustomerStatement;

 try
 {
 Connection connection = dataSource.getConnection();

 insertCustomerStatement = connection
 .prepareStatement(insertCustomerSql);
 updateCustomerLastNameStatement = connection
 .prepareStatement(updateCustomerLastNameSql);
 deleteCustomerStatement =
 connection.prepareStatement(deleteCustomerSql);

 insertCustomerStatement.setInt(1, 1);

 insertCustomerStatement.setString(2, "Leo");

 insertCustomerStatement.setString(3, "Smith");

 insertCustomerStatement.setString(4, "lsmith@fake.com");

 insertCustomerStatement.executeUpdate();

 insertCustomerStatement.setInt(1, 2);

 insertCustomerStatement.setString(2, "Jane");

 insertCustomerStatement.setString(3, "Davis");

 insertCustomerStatement.setString(4, null);

 insertCustomerStatement.executeUpdate();

 updateCustomerLastNameStatement.setString(1, "Jones");

 updateCustomerLastNameStatement.setInt(2, 2);

 updateCustomerLastNameStatement.executeUpdate();

 deleteCustomerStatement.setInt(1, 1);

 deleteCustomerStatement.executeUpdate();

 deleteCustomerStatement.close();
 updateCustomerLastNameStatement.close();
 insertCustomerStatement.close();

Chapter 4

[109]

 connection.close();

 response.getWriter().println("Database Updated Successfully");

 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

In this servlet, all SQL statements modify data in the database. Just as in the previous
example, we obtain a reference to the data source by using dependency injection. We
then obtain a connection from the connection pool by calling the getConnection()
method defined in the javax.sql.DataSource interface.

We then obtain an instance of a class implementing the javax.sql.
PreparedStatement interface for each SQL statement. We do this by calling the
prepareStatement() method defined in the java.sql.Connection interface.

Just as before, we set the values for each parameter by calling the appropriate
methods defined in the PreparedStatement interface (setInt() and setString()
in the example). After each parameter is set, we call the executeUpdate() method.
At this point, the statement is actually executed in the database.

After performing all four updates to the database, the servlet simply prints the
message "Database Updated Successfully" in the browser.

The Java Persistence API
The Java Persistence API (JPA) is a new addition to Java EE. As its name implies, it
is used to persist data to a Relational Database Management System. JPA replaces
Entity Beans in Java EE 5 (of course, for backwards compatibility, Entity Beans are
still supported). Java EE 5 Entities are regular Java classes; the Java EE container
knows these classes are Entities because they are decorated with the @Entity
annotation. Let's look at an Entity mapping to the CUSTOMER table in the
CUSTOMERDB database.

package net.ensode.glassfishbook.jpa;

import java.io.Serializable;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.Table;

@Entity

Database Connectivity

[110]

@Table(name = "CUSTOMERS")
public class Customer implements Serializable
{
 @Id
 @Column(name = "CUSTOMER_ID")
 private Long customerId;

 @Column(name = "FIRST_NAME")
 private String firstName;

 @Column(name = "LAST_NAME")
 private String lastName;

 private String email;

 public Long getCustomerId()
 {
 return customerId;
 }
 public void setCustomerId(Long customerId)
 {
 this.customerId = customerId;
 }
 public String getEmail()
 {
 return email;
 }
 public void setEmail(String email)
 {
 this.email = email;
 }
 public String getFirstName()
 {
 return firstName;
 }
 public void setFirstName(String firstName)
 {
 this.firstName = firstName;
 }
 public String getLastName()
 {
 return lastName;
 }
 public void setLastName(String lastName)
 {
 this.lastName = lastName;
 }
}

Chapter 4

[111]

In this code, the @Entity annotation lets GlassFish (or any other Java EE 5-compliant
application server, for that matter) know that this class is an entity.

The @Table(name = "CUSTOMERS") annotation lets the application server know
what table to map the entity to. The value of the name element contains the name of
the database table that the entity maps to. This annotation is optional; if the name of
the class maps the name of the database table, then it isn't necessary to specify what
table the entity maps to.

The @Id annotation indicates that the customerId field maps to the primary key.

The @Column annotation maps each field to a column in the table. If the name of the
field matches the name of the database column, then this annotation is not needed.
This is the reason why the email field is not annotated.

That is pretty much all we need to do to create a Java EE 5 Entity. Compare this to
Entity Beans, where the bean had to implement a number of life-cycle methods that
were rarely used; we also had to write a local and/or remote interface, a local and/or
remote home interface, plus a deployment descriptor in order to develop a single
entity bean.

The EntityManager class is used to persist Entities to a database. The following
example illustrates its usage:

package net.ensode.glassfishbook.jpa;

import java.io.IOException;

import javax.annotation.Resource;
import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.PersistenceUnit;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.transaction.HeuristicMixedException;
import javax.transaction.HeuristicRollbackException;
import javax.transaction.NotSupportedException;
import javax.transaction.RollbackException;
import javax.transaction.SystemException;
import javax.transaction.UserTransaction;

public class JpaDemoServlet extends HttpServlet
{
 @PersistenceUnit
 private EntityManagerFactory entityManagerFactory;

Database Connectivity

[112]

 @Resource
 private UserTransaction userTransaction;

 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 EntityManager entityManager =
 entityManagerFactory.createEntityManager();

 Customer customer = new Customer();
 Customer customer2 = new Customer();
 Customer customer3;

 customer.setCustomerId(3L);
 customer.setFirstName("James");
 customer.setLastName("McKenzie");
 customer.setEmail("jamesm@notreal.com");

 customer2.setCustomerId(4L);
 customer2.setFirstName("Charles");
 customer2.setLastName("Jonson");
 customer2.setEmail("cjohnson@phony.org");

 try
 {
 userTransaction.begin();
 entityManager.persist(customer);
 entityManager.persist(customer2);

 customer3 = entityManager.find(Customer.class, 4L);
 customer3.setLastName("Johnson");
 entityManager.persist(customer3);

 entityManager.remove(customer);

 userTransaction.commit();
 }
 catch (NotSupportedException e)
 {
 e.printStackTrace();
 }
 catch (SystemException e)
 {
 e.printStackTrace();
 }
 catch (SecurityException e)
 {
 e.printStackTrace();

Chapter 4

[113]

 }
 catch (IllegalStateException e)
 {
 e.printStackTrace();
 }
 catch (RollbackException e)
 {
 e.printStackTrace();
 }
 catch (HeuristicMixedException e)
 {
 e.printStackTrace();
 }
 catch (HeuristicRollbackException e)
 {
 e.printStackTrace();
 }
 response.getWriter().println("Database Updated Successfully");
 }
}

This servlet obtains an instance of a class implementing the javax.persistence.
EntityManagerFactory interface via dependency injection. This is done by
decorating the EntityManagerFactory variable with the @PersistenceUnit
annotation. The EntityManagerFactory instance is used to obtain a reference to an
instance of a class implementing the javax.persistence.EntityManager interface.

An instance of a class implementing the javax.transaction.UserTransaction
interface is then injected via the @Resource annotation. This object is necessary
because without wrapping calls to persist Entities to the database, the code would
throw a javax.persistence.TransactionRequiredException.

EntityManagers perform many of the duties that home interfaces performed for
entity beans, like finding entities in the database, updating them, or deleting them.
We obtain an instance of a class implementing EntityManager by invoking the
createEntityManager() method on EntityManagerFactory.

As Java EE 5 Entities are plain old Java objects (POJOs), they can be instantiated via
the new operator. We call methods on them directly, unlike with entity beans where
methods on an instance of a class implementing their remote interface are used.

Database Connectivity

[114]

The call to the setCustomerId() method takes advantage of
autoboxing, a feature added to the Java language in JDK 1.5. Notice that
the method takes an instance of java.lang.Long as its parameter, but
we are using long primitives. The code compiles and executes properly
thanks to this feature.

Calls to the persist() method on EntityManager must be in a transaction, therefore
it is necessary to start one by calling the begin() method on UserTransaction.

We then insert two new rows to the CUSTOMERS table by calling the persist()
method on entityManager for the two instances of the Customer class we populated
earlier in the code.

After persisting the data contained in the customer and customer2 objects, we
search the database for a row in the CUSTOMERS table with a primary key of 4. We
do this by invoking the find() method on entityManager. This method takes the
class of the Entity we are searching for as its first parameter, and the primary key
of the row corresponding to the object we want to obtain. This method is roughly
equivalent to the findByPrimaryKey() method on an entity bean's home interface.

The primary key we set for the customer2 object was 4, therefore what we have
now is a copy of this object. The last name for this customer was misspelled when
we originally inserted his data into the database; we now correct Mr. Johnson's
last name by invoking the setLastName() method on customer3, then update the
information in the database by invoking entityManager.persist().

We then delete the information for the customer object by invoking entityManager.
remove() and passing the customer object as a parameter.

Finally, we commit the changes to the database by invoking the commit() method on
userTransaction.

In order for this code to work as expected, an XML configuration file named
persistence.xml must be deployed in the WAR file containing this servlet. This file
must be placed in the WEB-INF/classes/META-INF/ directory inside the WAR file.
contents of this file for this code are shown next:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="1.0"
xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://
java.sun.com/xml/ns/persistence/persistence_1_0.xsd">
 <persistence-unit name="customerPersistenceUnit">
 <jta-data-source>jdbc/__CustomerDBPool</jta-data-source>
 </persistence-unit>
</persistence>

Chapter 4

[115]

The persistence.xml file must contain at least one <persistence-unit> element.
Each <persistence-unit> element must provide a value for its name attribute and
must contain a <jta-data-source> child element whose value is the JNDI name of
the data source to be used for the persistence unit.

The reason more than one <persistence-unit> element is allowed is because an
application may access more than one database. A <persistence-unit> element
is required for each database the application will access. If the application defines
more than one <persistence-unit> element, then the @PersistenceUnit
annotation used to inject the EntityManagerFactory must provide a value for its
unitName element; the value for this element must match the name attribute of the
corresponding <persistence-unit> element in persistence.xml.

Cannot persist detached object Exception
Frequently, an application will retrieve a JPA entity via the
EntityManager.find() method, then pass this entity to a business
or user interface layer, where it will potentially be modified, and later
the database data corresponding to the entity will be updated. In cases
like this, invoking EntityManager.persist() will result in an
exception. In order to update JPA entities this way we need to invoke
EntityManager.merge(). This method takes an instance of the JPA
entity as its single argument, and updates the corresponding row in the
database with the data stored in it.

Entity Relationships
In the previous section, we saw how to retrieve, insert, update, and delete single
entities in the database. Entities are rarely isolated; in the vast majority of cases they
are related to other entities.

Entities can have one-to-one, one-to-many, many-to-one, and many-to-many
relationships.

In the CustomerDB database, for example, there is a one-to-one relationship between
the LOGIN_INFO and the CUSTOMERS tables. This means that each customer
has exactly one corresponding row in the login info table. There is also a one-to-
many relationship between the CUSTOMERS table and the ORDERS table. This is
because a customer can place many orders. Additionally, there is a many-to-many
relationship between the ORDERS table and the ITEMS table. This is because an
order can contain many items and an item can be in many orders.

In the next few sections, we discuss how to establish relationships between
JPA entities.

Database Connectivity

[116]

One-to-One Relationships
One-to-one relationships occur when an instance of an entity can have zero or one
corresponding instance of another entity.

One-to-one entity relationships can be bi-directional (each entity is aware of the
relationship) or uni-directional (only one of the entities is aware of the relationship).
In the CUSTOMERDB database, the one-to-one mapping between the LOGIN_INFO
and the CUSTOMERS tables is unidirectional, because the LOGIN_INFO table has a
foreign key to the CUSTOMERS table, but not the other way around. As we will soon
see, this fact does not stop us from creating a bi-directional one-to-one relationship
between the Customer entity and the LoginInfo entity.

The source code for the LoginInfo entity, which maps to the LOGIN_INFO table, can
be seen next:

package net.ensode.glassfishbook.entityrelationships;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.JoinColumn;
import javax.persistence.Table;

@Entity
@Table(name = "LOGIN_INFO")
public class LoginInfo
{
 @Id
 @Column(name = "LOGIN_INFO_ID")
 private Long loginInfoId;

 @Column(name = "LOGIN_NAME")
 private String loginName;

 private String password;

 @OneToOne

 @JoinColumn(name="CUSTOMER_ID")

 private Customer customer;

 public Long getLoginInfoId()
 {
 return loginInfoId;
 }

 public void setLoginInfoId(Long loginInfoId)
 {
 this.loginInfoId = loginInfoId;
 }

Chapter 4

[117]

 public String getPassword()
 {
 return password;
 }

 public void setPassword(String password)
 {
 this.password = password;
 }

 public String getLoginName()
 {
 return loginName;
 }

 public void setLoginName(String userName)
 {
 this.loginName = userName;
 }

 public Customer getCustomer()
 {
 return customer;
 }

 public void setCustomer(Customer customer)
 {
 this.customer = customer;
 }

}

The code for this entity is very similar to the code for the Customer entity; it defines
fields that map to database columns, each field whose name does not match the
database column name is decorated with the @Column annotation, and in addition to
that, the primary key is decorated with the @Id annotation.

Where this code gets interesting is in the declaration of the customer field. As can be
seen in the code, the customer field is decorated with the @OneToOne annotation; this
lets the application server (GlassFish) know that there is a one-to-one relationship
between this entity and the Customer entity. The customer field is also decorated
with the @JoinColumn annotation. This annotation lets the container know what
column in the LOGIN_INFO table is the foreign key corresponding to the primary key
on the CUSTOMER table. As LOGIN_INFO, the table that the LoginInfo entity maps to,
has a foreign key to the CUSTOMER table, the LoginInfo entity owns the relationship.
If the relationship was uni-directional, we wouldn't have to make any changes to the
Customer entity. However, as we would like to have a bi-directional relationship
between these two entities, we need to add a LoginInfo field to the Customer entity,
along with the corresponding getter and setter methods.

Database Connectivity

[118]

As we mentioned before, in order to make the one-to-one relationship between the
Customer and LoginInfo entities bi-directional, we need to make a few simple
changes to the Customer entity:

package net.ensode.glassfishbook.entityrelationships;

import java.io.Serializable;
import java.util.Set;

import javax.persistence.CascadeType;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.OneToMany;
import javax.persistence.OneToOne;
import javax.persistence.Table;

@Entity
@Table(name = "CUSTOMERS")
public class Customer implements Serializable
{
 @Id
 @Column(name = "CUSTOMER_ID")
 private Long customerId;

 @Column(name = "FIRST_NAME")
 private String firstName;

 @Column(name = "LAST_NAME")
 private String lastName;

 private String email;

 @OneToOne(mappedBy = "customer")

 private LoginInfo loginInfo;

 public Long getCustomerId()
 {
 return customerId;
 }

 public void setCustomerId(Long customerId)
 {
 this.customerId = customerId;
 }

 public String getEmail()
 {
 return email;
 }

 public void setEmail(String email)
 {

Chapter 4

[119]

 this.email = email;
 }

 public String getFirstName()
 {
 return firstName;
 }

 public void setFirstName(String firstName)
 {
 this.firstName = firstName;
 }

 public String getLastName()
 {
 return lastName;
 }

 public void setLastName(String lastName)
 {
 this.lastName = lastName;
 }

 public LoginInfo getLoginInfo()

 {

 return loginInfo;

 }

 public void setLoginInfo(LoginInfo loginInfo)

 {

 this.loginInfo = loginInfo;

 }

The only change we need to make to the Customer entity to make the
one-to-one relationship bi-directional is to add a LoginInfo field to it, along with the
corresponding setter and getter methods. The loginInfo field is decorated with the
@OneToOne annotation. As the Customer entity does not own the relationship (the
table it maps to does not have a foreign key to the corresponding table), the mappedBy
element of the @OneToOne annotation needs to be added. This element specifies what
field in the corresponding entity has the other end of the relationship. In this particular
case, the customer field in the LoginInfo entity corresponds to the other end of this
one-to-one relationship.

The following servlet illustrates the use of this entity:

package net.ensode.glassfishbook.entityrelationships;

import java.io.IOException;

import javax.annotation.Resource;
import javax.persistence.EntityManager;

Database Connectivity

[120]

import javax.persistence.EntityManagerFactory;
import javax.persistence.PersistenceUnit;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.transaction.HeuristicMixedException;
import javax.transaction.HeuristicRollbackException;
import javax.transaction.NotSupportedException;
import javax.transaction.RollbackException;
import javax.transaction.SystemException;
import javax.transaction.UserTransaction;

public class OneToOneRelationshipDemoServlet extends HttpServlet
{
 @PersistenceUnit(unitName = "customerPersistenceUnit")
 private EntityManagerFactory entityManagerFactory;

 @Resource
 private UserTransaction userTransaction;

 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 EntityManager entityManager = entityManagerFactory.
createEntityManager();

 Customer customer;

 LoginInfo loginInfo = new LoginInfo();

 loginInfo.setLoginInfoId(1L);
 loginInfo.setLoginName("charlesj");
 loginInfo.setPassword("iwonttellyou");

 try
 {
 userTransaction.begin();
 customer = entityManager.find(Customer.class, 4L);
 loginInfo.setCustomer(customer);

 entityManager.persist(loginInfo);
 userTransaction.commit();

 response.getWriter().println("Database updated successfully.");
 }
 catch (NotSupportedException e)
 {
 e.printStackTrace();

Chapter 4

[121]

 }
 catch (SystemException e)
 {
 e.printStackTrace();
 }
 catch (SecurityException e)
 {
 e.printStackTrace();
 }
 catch (IllegalStateException e)
 {
 e.printStackTrace();
 }
 catch (RollbackException e)
 {
 e.printStackTrace();
 }
 catch (HeuristicMixedException e)
 {
 e.printStackTrace();
 }
 catch (HeuristicRollbackException e)
 {
 e.printStackTrace();
 }
 }
}

In this example, we first create an instance of the LoginInfo entity and populate it
with some data. We then obtain an instance of the Customer entity from the database
by invoking the find() method of EntityManager (data for this entity was inserted
into the CUSTOMERS table in one of the JDBC examples). We then invoke the
setCustomer() method on the LoginInfo entity, passing the customer object as a
parameter. Finally, we invoke the EntityManager.persist() method to save the
data in the database.

What happens behind the scenes is that the CUSTOMER_ID column of the
LOGIN_INFO table gets populated with the primary key of the corresponding
row in the CUSTOMERS table. This can be easily verified by querying the
CUSTOMERDB database.

Database Connectivity

[122]

Notice how the call to EntityManager.find() to obtain the customer
entity is inside the transaction in which we call EntityManager.
persist(). This must be the case, otherwise the database will not be
updated successfully.

One-to-Many Relationships
With JPA, one-to-many entity relationships can be bi-directional (one entity contains
a many-to-one relationship with the corresponding entity that contains an inverse
one-to-many relationship).

With SQL, one-to-many relationships are defined by foreign keys in one of the
tables. The "many" part of the relationship is the one containing a foreign key to
the "one" part of the relationship. One-to-many relationships defined in an RDBMS
are typically uni-directional, as making them bi-directional usually results in
denormalized data.

Just as when defining a uni-directional one-to-many relationship in an RDBMS, in
JPA the "many" part of the relationship is the one that has a reference to the "one"
part of the relationship; therefore the annotation used to decorate the appropriate
setter method is @ManyToOne.

In the CUSTOMERDB database, there is an uni-directional one-to-many relationship
between customers and orders. We define this relationship in the Order entity.

package net.ensode.glassfishbook.entityrelationships;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.JoinColumn;
import javax.persistence.ManyToOne;
import javax.persistence.Table;

@Entity
@Table(name = "ORDERS")
public class Order
{
 @Id
 @Column(name = "ORDER_ID")
 private Long orderId;

 @Column(name = "ORDER_NUMBER")
 private String orderNumber;

 @Column(name = "ORDER_DESCRIPTION")
 private String orderDescription;

Chapter 4

[123]

 @ManyToOne

 @JoinColumn(name = "CUSTOMER_ID")

 private Customer customer;

 public Customer getCustomer()
 {
 return customer;
 }

 public void setCustomer(Customer customer)
 {
 this.customer = customer;
 }

 public String getOrderDescription()
 {
 return orderDescription;
 }

 public void setOrderDescription(String orderDescription)
 {
 this.orderDescription = orderDescription;
 }

 public Long getOrderId()
 {
 return orderId;
 }

 public void setOrderId(Long orderId)
 {
 this.orderId = orderId;
 }

 public String getOrderNumber()
 {
 return orderNumber;
 }

 public void setOrderNumber(String orderNumber)
 {
 this.orderNumber = orderNumber;
 }
}

If we were to define a uni-directional many-to-one relationship between the Orders
entity and the Customer entity, we wouldn't need to make any changes to the
Customer entity. To define a bi-directional one-to-many relationship between the
two entities, a new field decorated with the @OneToMany annotation needs to be
added to the Customer entity.

Database Connectivity

[124]

package net.ensode.glassfishbook.entityrelationships;

import java.io.Serializable;
import java.util.Set;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.OneToMany;
import javax.persistence.Table;

@Entity
@Table(name = "CUSTOMERS")
public class Customer implements Serializable
{
 @Id
 @Column(name = "CUSTOMER_ID")
 private Long customerId;

 @Column(name = "FIRST_NAME")
 private String firstName;

 @Column(name = "LAST_NAME")
 private String lastName;

 private String email;

 @OneToOne(mappedBy = "customer")
 private LoginInfo loginInfo;

 @OneToMany(mappedBy="customer")

 private Set<Order> orders;

 public Long getCustomerId()
 {
 return customerId;
 }

 public void setCustomerId(Long customerId)
 {
 this.customerId = customerId;
 }

 public String getEmail()
 {
 return email;
 }

 public void setEmail(String email)
 {
 this.email = email;
 }

 public String getFirstName()

Chapter 4

[125]

 {
 return firstName;
 }

 public void setFirstName(String firstName)
 {
 this.firstName = firstName;
 }

 public String getLastName()
 {
 return lastName;
 }

 public void setLastName(String lastName)
 {
 this.lastName = lastName;
 }

 public LoginInfo getLoginInfo()
 {
 return loginInfo;
 }

 public void setLoginInfo(LoginInfo loginInfo)
 {
 this.loginInfo = loginInfo;
 }

 public Set<Order> getOrders()

 {

 return orders;

 }

 public void setOrders(Set<Order> orders)

 {

 this.orders = orders;

 }

}

The only difference between this version of the Customer entity and the previous one
is the addition of the orders field and related getter and setter methods. Of special
interest is the @OneToMany annotation decorating this field. The mappedBy attribute
must match the name of the corresponding field in the entity corresponding to the
"many" part of the relationship. In simple terms, the value of the mappedBy attribute
must match the name of the field decorated with the @ManyToOne annotation in the
bean at the other side of the relationship.

Database Connectivity

[126]

The following servlet illustrates how to persist one-to-many relationships to
the database.

package net.ensode.glassfishbook.entityrelationships;

import java.io.IOException;

import javax.annotation.Resource;
import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.PersistenceUnit;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.transaction.HeuristicMixedException;
import javax.transaction.HeuristicRollbackException;
import javax.transaction.NotSupportedException;
import javax.transaction.RollbackException;
import javax.transaction.SystemException;
import javax.transaction.UserTransaction;

public class OneToManyRelationshipDemoServlet extends HttpServlet
{
 @PersistenceUnit(unitName = "customerPersistenceUnit")
 private EntityManagerFactory entityManagerFactory;

 @Resource
 private UserTransaction userTransaction;

 @Override
 protected void doGet(HttpServletRequest request, HttpServletResponse
 response) throws ServletException, IOException
 {
 EntityManager entityManager =
 entityManagerFactory.createEntityManager();

 Customer customer;
 Order order1;
 Order order2;

 order1 = new Order();
 order1.setOrderId(1L);
 order1.setOrderNumber("SFX12345");
 order1.setOrderDescription("Dummy order.");

 order2 = new Order();
 order2.setOrderId(2L);
 order2.setOrderNumber("SFX23456");
 order2.setOrderDescription("Another dummy order.");

Chapter 4

[127]

 try
 {
 userTransaction.begin();

 customer = entityManager.find(Customer.class, 4L);

 order1.setCustomer(customer);
 order2.setCustomer(customer);

 entityManager.persist(order1);
 entityManager.persist(order2);

 userTransaction.commit();

 response.getWriter().
 println("Database updated successfully.");
 }
 catch (NotSupportedException e)
 {
 e.printStackTrace();
 }
 catch (SystemException e)
 {
 e.printStackTrace();
 }
 catch (SecurityException e)
 {
 e.printStackTrace();
 }
 catch (IllegalStateException e)
 {
 e.printStackTrace();
 }
 catch (RollbackException e)
 {
 e.printStackTrace();
 }
 catch (HeuristicMixedException e)
 {
 e.printStackTrace();
 }
 catch (HeuristicRollbackException e)
 {
 e.printStackTrace();
 }
 }
}

Database Connectivity

[128]

This code is pretty similar to the previous example. It instantiates two instances
of the Order entity and populates them with some data; then in a transaction,
an instance of the Customer entity is located, and used as the parameter of the
setCustomer() method of both instances of the Order entity. We then persist both
Order entities by invoking EntityManager.persist() for each one of them.

Just as when dealing with one-to-one relationships, what happens behind the
scenes is that the CUSTOMER_ID column of the ORDERS table in the CUSTOMERDB
database is populated with the primary key corresponding to the related row in the
CUSTOMERS table.

As the relationship is bidirectional, we can obtain all orders related to a customer by
invoking the getOrders() method on the Customer entity.

Many-to-Many Relationships
In the CUSTOMERDB database, there is a many-to-many relationship between the
ORDERS table and the ITEMS table. We can map this relationship by adding
a new Collection<Item> field to the Order entity and decorating it with the
@ManyToMany annotation.

package net.ensode.glassfishbook.entityrelationships;

import java.util.Collection;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.JoinColumn;
import javax.persistence.JoinTable;
import javax.persistence.ManyToMany;
import javax.persistence.ManyToOne;
import javax.persistence.Table;

@Entity
@Table(name = "ORDERS")
public class Order
{
 @Id
 @Column(name = "ORDER_ID")
 private Long orderId;

 @Column(name = "ORDER_NUMBER")
 private String orderNumber;

 @Column(name = "ORDER_DESCRIPTION")
 private String orderDescription;

 @ManyToOne

Chapter 4

[129]

 @JoinColumn(name = "CUSTOMER_ID")
 private Customer customer;

 @ManyToMany

 @JoinTable(name = "ORDER_ITEMS",

 joinColumns = @JoinColumn(name = "ORDER_ID",

 referencedColumnName = "ORDER_ID"),

 inverseJoinColumns = @JoinColumn(name = "ITEM_ID",

 referencedColumnName = "ITEM_ID"))

 private Collection<Item> items;

 public Customer getCustomer()
 {
 return customer;
 }

 public void setCustomer(Customer customer)
 {
 this.customer = customer;
 }

 public String getOrderDescription()
 {
 return orderDescription;
 }

 public void setOrderDescription(String orderDescription)
 {
 this.orderDescription = orderDescription;
 }

 public Long getOrderId()
 {
 return orderId;
 }

 public void setOrderId(Long orderId)
 {
 this.orderId = orderId;
 }

 public String getOrderNumber()
 {
 return orderNumber;
 }

 public void setOrderNumber(String orderNumber)
 {
 this.orderNumber = orderNumber;
 }

Database Connectivity

[130]

 public Collection<Item> getItems()

 {

 return items;

 }

 public void setItems(Collection<Item> items)

 {

 this.items = items;

 }

}

As we can see in this code, in addition to being decorated with the @ManyToMany
annotation, the items field is also decorated with the @JoinTable annotation. As its
name suggests, this annotation lets the application server know what table is used as
a join table to create the many-to-many relationship between the two entities. This
annotation has three relevant elements: the name element, which defines the name
of the join table, and the joinColumns and inverseJoinColumns elements, which
define the columns that serve as foreign keys in the join table pointing to the entities'
primary keys. Values for the joinColumns and inverseJoinColumns elements are yet
another annotation, the @JoinColumn annotation. This annotation has two relevant
elements, the name element, which defines the name of the column in the join table,
and the referencedColumnName element, which defines the name of the column in
the entity table.

The Item entity is a simple entity mapping to the ITEMS table in the
CUSTOMERDB database.

package net.ensode.glassfishbook.entityrelationships;

import java.util.Collection;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.ManyToMany;
import javax.persistence.Table;

@Entity
@Table(name = "ITEMS")
public class Item
{
 @Id
 @Column(name = "ITEM_ID")
 private Long itemId;

 @Column(name = "ITEM_NUMBER")
 private String itemNumber;

 @Column(name = "ITEM_SHORT_DESC")

Chapter 4

[131]

 private String itemShortDesc;

 @Column(name = "ITEM_LONG_DESC")
 private String itemLongDesc;

 @ManyToMany(mappedBy="items")

 private Collection<Order> orders;

 public Long getItemId()
 {
 return itemId;
 }

 public void setItemId(Long itemId)
 {
 this.itemId = itemId;
 }

 public String getItemLongDesc()
 {
 return itemLongDesc;
 }

 public void setItemLongDesc(String itemLongDesc)
 {
 this.itemLongDesc = itemLongDesc;
 }

 public String getItemNumber()
 {
 return itemNumber;
 }

 public void setItemNumber(String itemNumber)
 {
 this.itemNumber = itemNumber;
 }

 public String getItemShortDesc()
 {
 return itemShortDesc;
 }

 public void setItemShortDesc(String itemShortDesc)
 {
 this.itemShortDesc = itemShortDesc;
 }

 public Collection<Order> getOrders()

 {

 return orders;

 }

Database Connectivity

[132]

 public void setOrders(Collection<Order> orders)

 {

 this.orders = orders;

 }

}

Just like one-to-one and one-to-many relationships, many-to-many relationships
can be uni-directional or bi-directional. As we would like the many-to-many
relationship between the Order and Item entities to be bi-directional, we added a
Collection<Order> field and decorated it with the @ManyToMany annotation. As
the corresponding field in the Order entity already has the join table defined, it is
not necessary to do it again here. The entity containing the @JoinTable annotation
is said to own the relationship; in a many-to-many relationship, either entity
can own the relationship. In our example, the Order entity owns it, because its
Collection<Item> field is decorated with the @JoinTable annotation.

Just as with the one-to-one and one-to-many relationships, the @ManyToMany
annotation in the non-owning side of a bi-directional many-to-many relationship
must contain a mappedBy element indicating what field in the owning entity
corresponds to the relationship.

Now that we have seen the changes necessary to establish a bi-directional
many-to-many relationship between the Order and Item entities, we can see the
relationship in action in the following example:

package net.ensode.glassfishbook.entityrelationships;

import java.io.IOException;
import java.util.ArrayList;
import java.util.Collection;

import javax.annotation.Resource;
import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.PersistenceUnit;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.transaction.HeuristicMixedException;
import javax.transaction.HeuristicRollbackException;
import javax.transaction.NotSupportedException;
import javax.transaction.RollbackException;
import javax.transaction.SystemException;
import javax.transaction.UserTransaction;

public class ManyToManyRelationshipDemoServlet extends HttpServlet

Chapter 4

[133]

{
 @PersistenceUnit(unitName = "customerPersistenceUnit")
 private EntityManagerFactory entityManagerFactory;

 @Resource
 private UserTransaction userTransaction;

 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 EntityManager entityManager =
 entityManagerFactory.createEntityManager();

 Order order;

 Collection<Item> items = new ArrayList<Item>();
 Item item1 = new Item();
 Item item2 = new Item();

 item1.setItemId(1L);
 item1.setItemNumber("BCD1234");
 item1.setItemShortDesc("Notebook Computer");
 item1.setItemLongDesc("64 bit Quad core CPU, 4GB memory");

 item2.setItemId(2L);
 item2.setItemNumber("CDF2345");
 item2.setItemShortDesc("Cordless Mouse");
 item2.setItemLongDesc("Three button, infrared, "
 + "vertical and horizontal scrollwheels");

 items.add(item1);
 items.add(item2);

 try
 {
 userTransaction.begin();

 entityManager.persist(item1);

 entityManager.persist(item2);

 order = entityManager.find(Order.class, 1L);

 order.setItems(items);

 entityManager.persist(order);

 userTransaction.commit();

 response.getWriter().println(
 "Database updated successfully");
 }
 catch (NotSupportedException e)
 {

Database Connectivity

[134]

 e.printStackTrace();
 }
 catch (SystemException e)
 {
 e.printStackTrace();
 }
 catch (SecurityException e)
 {
 e.printStackTrace();
 }
 catch (IllegalStateException e)
 {
 e.printStackTrace();
 }
 catch (RollbackException e)
 {
 e.printStackTrace();
 }
 catch (HeuristicMixedException e)
 {
 e.printStackTrace();
 }
 catch (HeuristicRollbackException e)
 {
 e.printStackTrace();
 }
 }
}

This code creates two instances of the Item entity and populates them with some
data. It then adds these two instances to a collection. A transaction is then started,
and the two Item instances are persisted to the database. Then an instance of the
Order entity is retrieved from the database. The setItems() method of the Order
entity instance is then invoked, passing the collection containing the two Item
instances as a parameter. The Customer instance is then persisted into the database.
At this point, to rows are created behind the scenes to the ORDER_ITEMS table,
which is the join table between the ORDERS and ITEMS tables.

Composite Primary Keys
Most tables in the CUSTOMERDB database have a column with the sole purpose
of serving as a primary key (this type of primary key is sometimes referred to as a
surrogate primary key or as an artificial primary key). However, some databases
are not designed this way; instead a column in the database that is known to be

Chapter 4

[135]

unique across rows is used as the primary key, or if there is no column whose value
is guaranteed to be unique across rows, then a combination of two or more rows is
used as the table's primary key. It is possible to map this kind of primary key to JPA
entities by using a primary key class.

There is one table in the CUSTOMERDB database that does not have a surrogate
primary key; this table is the ORDER_ITEMS table. This table serves as a join table
between the ORDERS and the ITEMS tables; in addition to having foreign keys for
these two tables, this table has an additional column called ITEM_QTY, which stores
the quantity of each item in an order. As this table does not have a surrogate primary
key, the JPA entity mapping to it must have a custom primary key class. In this
table, the combination of the ORDER_ID and the ITEM_ID columns must be unique,
therefore this is a good combination for a composite primary key.

package net.ensode.glassfishbook.compositekeys;

import java.io.Serializable;

public class OrderItemPK implements Serializable
{
 public Long orderId;
 public Long itemId;

 public OrderItemPK()
 {

 }

 public OrderItemPK(Long orderId, Long itemId)
 {
 this.orderId = orderId;
 this.itemId = itemId;
 }

 @Override
 public boolean equals(Object obj)
 {
 boolean returnVal = false;

 if (obj == null)
 {
 returnVal = false;
 }
 else if (!obj.getClass().equals(this.getClass()))
 {
 returnVal = false;
 }
 else
 {
 OrderItemPK other = (OrderItemPK) obj;

Database Connectivity

[136]

 if (this == other)
 {
 returnVal = true;
 }
 else if (orderId != null && other.orderId != null
 && this.orderId.equals(other.orderId))
 {
 if (itemId != null && other.itemId != null
 && itemId.equals(other.itemId))
 {
 returnVal = true;
 }
 }
 else
 {
 returnVal = false;
 }
 }

 return returnVal;
 }

 @Override
 public int hashCode()
 {
 if (orderId == null || itemId == null)
 {
 return 0;
 }
 else
 {
 return orderId.hashCode() ^ itemId.hashCode();
 }
 }
}

A custom primary key class must satisfy the following requirements:

1.	 The class must be public.
2.	 It must implement java.io.Serializable.
3.	 It must have a public constructor that takes no arguments.
4.	 Its fields must be public or protected.
5.	 Its field names and types must match those of the entity.
6.	 It must override the default hashCode() and equals() methods defined in

the java.lang.Object class.

Chapter 4

[137]

The OrderPK class shown earlier, meets all of these requirements. It also has a
convenience constructor that takes two Long objects meant to initialize its orderId
and itemId fields. This constructor was added for convenience; this is not a
requirement for the class to be used as a primary key class.

When an entity uses a custom primary key class, it must be decorated with the
@IdClass annotation. The OrderItem class uses OrderItemPK as its custom primary
key class, so it must be decorated with this annotation.

package net.ensode.glassfishbook.compositekeys;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.IdClass;
import javax.persistence.Table;

@Entity
@Table(name = "ORDER_ITEMS")
@IdClass(value = OrderItemPK.class)

public class OrderItem
{
 @Id

 @Column(name = "ORDER_ID")
 private Long orderId;

 @Id

 @Column(name = "ITEM_ID")
 private Long itemId;

 @Column(name = "ITEM_QTY")
 private Long itemQty;

 public Long getItemId()
 {
 return itemId;
 }

 public void setItemId(Long itemId)
 {
 this.itemId = itemId;
 }

 public Long getItemQty()
 {
 return itemQty;
 }

 public void setItemQty(Long itemQty)
 {

Database Connectivity

[138]

 this.itemQty = itemQty;
 }

 public Long getOrderId()
 {
 return orderId;
 }

 public void setOrderId(Long orderId)
 {
 this.orderId = orderId;
 }
}

There are two differences between this entity and previous entities we have seen.
The first difference is that this entity is decorated with the @IdClass annotation,
indicating the primary key class corresponding to it. The second difference is that
this entity has more than one field decorated with the @Id annotation. As this entity
has a composite primary key, each field that is part of the primary key must be
decorated with this annotation.

Obtaining a reference of an entity with a composite primary key is not much
different than obtaining a reference to an entity with a primary key consisting of a
single field. The following example demonstrates how to do this.

package net.ensode.glassfishbook.compositekeys;

import java.io.IOException;
import java.io.PrintWriter;

import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.PersistenceUnit;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class CompositeKeyDemoServlet extends HttpServlet
{
 @PersistenceUnit(unitName = "customerPersistenceUnit")
 private EntityManagerFactory entityManagerFactory;

 @Override
 protected void doGet(HttpServletRequest request, HttpServletResponse
 response) throws ServletException, IOException
 {
 PrintWriter printWriter = response.getWriter();
 EntityManager entityManager =
 entityManagerFactory.createEntityManager();

Chapter 4

[139]

 OrderItem orderItem;
 orderItem = entityManager.find(OrderItem.class,
 new OrderItemPK(1L, 2L));
 response.setContentType("text/html");
 if (orderItem != null)
 {
 printWriter
 .println("Found an instance of Order Item for the supplied
 primary key:
");
 printWriter.println("OrderItem order id: " +
 orderItem.getOrderId()
 + "
");
 printWriter.println("OrderItem item id: " +
 orderItem.getItemId()
 + "
");
 }
 else
 {
 printWriter
 .println("No instance of OrderItem found for the supplied
 primary key.");
 }
 }
}

As can be seen in this example, the only difference between locating an entity with a
composite primary key and an entity with a primary key consisting of a single field
is that an instance of the custom primary key class must be passed as the second
argument of the EntityManager.find() method; fields for this instance must be
populated with the appropriate values for each field that is part of the primary key.

Java Persistence Query Language
All of our examples that obtain entities from the database so far have conveniently
assumed that the primary key for the entity is known ahead of time. We all know
that frequently this is not the case. Whenever we need to search for an entity by a
field other than the entity's primary key we must use the Java Persistence Query
Language (JPQL).

JPQL is an SQL-like language used for retrieving, updating, and deleting entities in
a database. The following example illustrates how to use JPQL to retrieve a subset of
states from the US_STATES table in the CUSTOMERDB database:

package net.ensode.glassfishbook.jpaquerylang;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.List;

Database Connectivity

[140]

import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.PersistenceUnit;
import javax.persistence.Query;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
public class SelectQueryDemoServlet extends HttpServlet
{
 @PersistenceUnit(unitName = "customerPersistenceUnit")
 private EntityManagerFactory entityManagerFactory;
 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 PrintWriter printWriter = response.getWriter();
 List<UsState> matchingStatesList;
 EntityManager entityManager =
 entityManagerFactory.createEntityManager();
 Query query = entityManager.createQuery(
 "SELECT s FROM UsState s WHERE s.usStateNm " +
 "LIKE :name");
 query.setParameter("name", "New%");
 matchingStatesList = query.getResultList();
 response.setContentType("text/html");
 printWriter.println("The following states match " +
 "the criteria:
");
 for (UsState state : matchingStatesList)
 {
 printWriter.println(state.getUsStateNm() + "
");
 }
}

The above code invokes the EntityManager.createQuery() method, passing a
String containing a JPQL query as a parameter. This method returns an instance of
javax.persistence.Query. The query retrieves all UsState entities whose names
start with the word "New".

As can be seen in the above code, JPQL is similar to SQL; however, there are some
differences that may confuse readers with SQL knowledge. The equivalent SQL code
for the query in the code would be:

SELECT * from US_STATES s where s.US_STATE_NM like 'New%'

Chapter 4

[141]

The first difference between JPQL and SQL is that in JPQL, we always retrieve all
properties of an entity, where in SQL individual columns may be retrieved. The "s"
after the entity name in the JPQL query is an alias for the entity. Table aliases are
optional in SQL, but entity aliases are required in JPQL. Keeping these differences in
mind, the JPQL query should now be a lot less confusing.

The :name in the query is a named parameter; named parameters are meant to
be substituted with actual values. This is done by invoking the setParameter()
method in the instance of javax.persistence.Query returned by the call to
EntityManager.createQuery(). A JPQL query can have multiple
named parameters.

To actually run the query and retrieve the entities from the database, the
getResultList() method must be invoked in the instance of javax.persistence.
Query obtained from EntityManager.createQuery(). This method returns an
instance of a class implementing the java.util.List interface; this list contains the
entities matching the query criteria. If no entities match the criteria, then an empty
list is returned.

If we are certain that the query will return a single entity, then the
getSingleResult() method may be alternatively called on Query; this method
returns an Object that must be cast to the appropriate entity.

The earlier example uses the LIKE operator to find entities whose names start with
the word "New". This is accomplished by substituting the query's named parameter
with the value "New%". The percent sign at the end of the parameter value means
that any number of characters after the word "New" will match the expression. The
percent sign can be used anywhere in the parameter value, for example, a value
of "%Dakota" would match any entities whose names end in "Dakota", a value of
"A%a" would match any states whose names start with a capital "A" and end with
a lowercase "a". There can be more than one percent sign in a parameter value. The
underscore sign (_) can be used to match a single character; all the rules for the
percent sign apply to the underscore as well.

In addition to the LIKE operator, there are other operators that can be used to
retrieve entities from the database.

The = operator will retrieve entities whose field at the left of the operator
exactly matches the value to the right of the operator.
The > operator will retrieve entities whose field at the left of the operator is
greater than the value to the right of the operator.
The < operator will retrieve entities whose field at the left of the operator is
less than the value to the right of the operator.

•

•

•

Database Connectivity

[142]

The >= operator will retrieve entities whose field at the left of the operator is
greater than or equal to the value to the right of the operator.
The <= operator will retrieve entities whose field at the left of the operator is
less than or equal to the value to the right of the operator.

All of these operators work the same way as the equivalent operators in SQL. Just
as in SQL, these operators can be combined with the "AND" and "OR" operators.
Conditions combined with the "AND" operator match if both conditions are true,
conditions combined with the "OR" operator match if at least one of the conditions
is true.

If we intend to use a query many times, it can be stored in a named query. Named
queries can be defined by decorating the relevant entity class with the @NamedQuery
annotation. This annotation has two elements, a name element used to set the
name of the query, and a query element defining the query itself. To execute a
named query, the createNamedQuery() method must be invoked in an instance of
EntityManager. This method takes a String containing the query name as its sole
parameter, and returns an instance of javax.persistence.Query.

In addition to retrieving entities, JPQL can be used to modify or delete entities.
However, entity modification and deletion can be done programmatically via the
EntityManager interface; doing so results in code that tends to be more readable
than that when using JPQL. Because of this, we will not cover entity modification
and deletion via JPQL. Readers interested in writing JPQL queries to modify
and delete entities, as well as readers wishing to know more about JPQL are
encouraged to read Chapter 4 of the JSR 220: Enterprise JavaBeans,Version 3.0
specification. This specification can be downloaded at http://jcp.org/aboutJava/
communityprocess/final/jsr220/index.html.

Final Notes
In the examples of this chapter, we showed database access done directly from
servlets. We did this to get the point across without bogging ourselves down with
details; however, in general, this is not a good practice. Database access code should
be encapsulated in Data Access Objects (DAOs).

For more information on the DAO design pattern, see
http://java.sun.com/blueprints/corej2eepatterns/
Patterns/DataAccessObject.html

•

•

Chapter 4

[143]

Also, our examples showed servlets that did pretty much nothing but database
access. Servlets typically serve as controllers when following the Model View
Controller (MVC) design pattern. We chose not to add any user interface code to our
examples because it is irrelevant to the topic at hand, but for real applications we
would of course have entities populated from user interface components, most likely
input fields in a JSP. These fields would be in an HTML form that when submitted
would pass control to a servlet, which would then populate Entities from the data
entered by the user and pass the entities to a DAO, which would then persist the
data to the database.

For more information about the MVC design pattern, see http://java.
sun.com/blueprints/patterns/MVC.html.

Summary
This chapter covered how to access data in a database both via the Java Database
Connectivity (JDBC) API and through the Java Persistence API (JPA).

We covered how to obtain data from the database by using JDBC via the
executeQuery() method defined in the java.sql.PreparedStatement
interface. We also covered how to insert, update, and delete database data via the
executeUpdate() method defined in the same interface. Additionally, we covered
using dependency injection to inject a Data Source into an object.

We also covered setting a Java class as an entity by decorating it with the @Entity
annotation. Additionally, we covered how to map an entity to a database table
via the @Table annotation. We also covered how to map entity fields to database
columns via the @Column annotation, as well as declaring an entity's primary key via
the @Id annotation.

We covered using the javax.persistence.EntityManager interface to find, persist,
and update JPA entities.

We covered defining both unidirectional and bidirectional one-to-one, one-to-many,
and many-to-many relationships between JPA entities as well.

Additionally, we covered how to use JPA composite primary keys by developing
custom primary key classes.

Lastly, we covered how to retrieve entities from a database by using the Java
Persistence Query Language (JPQ���L).

JSP Standard Tag Library
The JSP Standard Tag Library (JSTL) is a collection of standard JSP tags that perform
several common tasks. This frees us from having to develop custom tags for these
tasks, or from using a mix of tags from several organizations to do our work. JSTL
contains core tags that perform, among other things, conditional logic and iteration
through collections; format tags that do String formatting and internationalization;
SQL tags that interact with a database; XML tags for XML processing. Additionally,
JSTL contains a number of functions that perform several tasks, most of which are for
String manipulation.

In this chapter, we will cover each of the JSTL tag libraries, providing examples
for the most commonly used tags and functions. Topics we will cover in this
chapter include:

Core JSTL tag library
Formatting JSTL tag library
SQL JSTL tag library
XML JSTL tag library
JSTL functions

Core JSTL Tag Library
Core JSTL tags perform tasks like writing output to the browser, conditional display
of segments in a page, and iterating through collections. Much of what the core JSTL
tags do can be accomplished with scriptlets; however, the page is much easier to read
and therefore more maintainable if core JSTL tags are used, instead of scriptlets.

•

•

•

•

•

JSP Standard Tag Library

[146]

The following example shows a JSP using some of the most common JSTL core tags:

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>
<%@taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<%@page import="java.util.ArrayList"%>
<html>
<%
 ArrayList<String> nameList = new ArrayList<String>(4);

 nameList.add("David");
 nameList.add("Raymond");
 nameList.add("Beth");
 nameList.add("Joyce");

 request.setAttribute("nameList", nameList);
%>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Core Tag Demo</title>
</head>
<body>
<c:set var="name" scope="page" value="${param.name}"></c:set>

<c:out value="Hello"></c:out>
<c:choose>
 <c:when test="${!empty name}">
 <c:out value="${name}"></c:out>
 </c:when>
 <c:otherwise>
 <c:out value="stranger"></c:out>

 <c:out value="Need a name? Here are a few options:" />

 <c:forEach var="nameOption"
 items="${requestScope.nameList}">
 <c:out value="${nameOption}"></c:out>
 </c:forEach>

 </c:otherwise>
</c:choose>
<c:remove var="name" scope="page" />
</body>
</html>

Chapter 5

[147]

In a nutshell, the previous code segment looks for a request parameter called name; if
it finds it, it displays the message "Hello ${name}" in the browser (${name} is actually
replaced with the value of the parameter). If the parameter is not found, it prints
the message "Hello stranger" and gets a little smart with the user, suggesting a
few names.

The page employs the taglib directive to declare that it uses the JSTL core tag
library. Though any prefix can be used for this library, using the prefix "c" is
standard practice.

Before doing anything with JSTL, the page has a scriptlet that initializes an instance
of java.util.ArrayList with some Strings containing names, and attaches the
ArrayList to the request (this would typically be done in a servlet or some other
class, not in the JSP itself; it was done this way in the example for simplicity).

The first JSTL tag used in the page is the <c:set> tag. This tag sets the result of the
expression defined in its variable attribute and stores it in a variable in the specified
scope. The name of the variable is defined in the tag's var attribute. The scope of the
variable is defined in the tag's scope attribute, if no scope is specified, the page
scope is used by default. The expression to be evaluated is defined in the tag's
value attribute.

Page scope is always the default
A number of JSTL tags contain a var attribute to define a variable in a
scope specified by a scope attribute. In all cases, if no scope is specified,
the page scope is used by default.

JSP Standard Tag Library

[148]

In the preceding example, the expression is looking for the value of a request
parameter with a name of "name"; param is an implicit variable that resolves to a
map using request parameter names as keys and request parameter values as values.
This implicit variable is equivalent to calling the getParameterMap() method on
the request. The value after the dot (name in the example) corresponds to the key
we want to get from the parameter map (which in turn corresponds to the request
parameter name).

The next core JSTL tag we see in the example is the <c:out> tag. This tag simply
displays in the browser the value of the expression defined in its value attribute.
In this particular case, the expression defined in the value attribute is a constant,
therefore it is displayed verbatim in the browser output.

Next, we see the <c:choose> tag. This tag allows us to do if/then/else-like
conditions in the page. The <c:choose> tag must contain one or more <c:when> tags
and optionally a <c:otherwise> tag. The <c:when> tag contains a test attribute that
must contain an Boolean expression. Once the expression in one of the <c:when> tags
nested in a <c:choose> tag evaluates to true, the body of the tag is executed and the
test attributes of other <c:when> tags nested inside the same <c:choose> tag are
not evaluated.

The next new tag we see in the example is the <c:otherwise> tag. The body of this
optional tag is executed if none of the expressions in any <c:when> tag evaluates to
true. In the example, the body of the tag is executed when no request parameter
with a name of "name" exists in the request, or if the value of the parameter is an
empty String.

In this example, the <c:when> tag contains the ! operator that, just as in Java, negates
a Boolean expression. The tag also contains the empty operator, this operator checks
to see if a string is null or has a length of zero. The test attribute of the <c:when>
tag can have several logical and/or relational operators that can be combined to
build more complex expressions. All relational operators that can be used in the test
attribute (or any other Unified Expression Language expression, for that matter) are
listed in the following table:

Relational Operator Description
 == or eq Equals: evaluates to true if the expression to the left of the operator

equals the expression to the right of the operator.
 > or gt Greater than: evaluates to true if the expression to the left of the

operator is greater than the expression to the right of the operator.
 < or lt Less than: evaluates to true if the expression to the left of the

operator is less than the expression to the right of the operator.

Chapter 5

[149]

Relational Operator Description
 >= or ge Greater than or equal: evaluates to true if the expression to the

left of the operator is greater than or equal to the expression to the
right of the operator.

 <= or le Less than or equal: evaluates to true if the expression to the left of
the operator is less than or equal to the expression to the right of
the operator.

!= or ne Not equal: evaluates to true if the expression to the left of the
operator is not equal to the expression to the right of the operator.

All of the above symbolic operators work the same way as their equivalent Java
operators, therefore their use should be natural to any Java developer. In addition
to allowing us to use the symbolic operators, in the unified expression language, all
symbolic operators have a textual equivalent. These textual equivalents are used if
we need our page to be valid XML, as using the symbolic operators typically results
in invalid XML markup.

In addition to relational operators, logical operators can be used in Unified
Expression Language expressions. Valid logical operators are listed in the
following table:

Logical Operator Description
&& or and Evaluates to true if both the expression to the left of the operator and

the one to the right of the operator are true.
|| or or Evaluates to true if either the expression to the left of the operator or

the one to the right of the operator is true (or both).
 ! or not Negates the expression to the right of the operator, if the expression

evaluates to true, this operator makes it evaluate to false, and
vice versa.

empty Evaluates to true if the value to the right of the operator is null or
empty. The value to the right of the operator must be a String or
a Collection.

E
1
?E

2
:E

3
Conditional expression: if E1 is true, it evaluates to E2, otherwise it
evaluates to E3.

Just as with relational operators, logical operators work the same way as their Java
equivalents; and each one has a symbolic and textual variant.

JSP Standard Tag Library

[150]

The Unified Expression Language also contains arithmetic operators, listed in the
following table.

Arithmetic Operator Description
+ Addition: adds the values to the left and right of the operator.
- (binary) Subtraction: subtracts the value to the right of the operator from

the value to the left of the operator.
* Multiplication: multiplies the values to the left and right of

the operator.
/ or div Division: divides the values to the left (dividend) and right

(divisor) of the operator.
% or mod Modulo: divides the values to the left (dividend) and right

(divisor) of the operator and returns the reminder.
- (unary) Minus: multiplies the value to the right of the operator by -1.

All arithmetic operators must be used with numerical values.

After our brief discussion of the Unified Expression Language operators, we can
now get back to discussing the example. The next new tag we see in the example is
the <c:forEach> tag. This tag iterates through a Collection, array, or Map. In the
example, it iterates through the instance of java.util.ArrayList attached to the
request in the scriptlet defined earlier in the page.

The var attribute of the <c:forEach> tag defines a variable to be used to access the
current element in the collection; this variable is only visible inside the body of
the tag.

The items attribute of the <c:forEach> tag indicates the array, Collection, or Map to
iterate through.

The <c:forEach> tag has additional attributes not shown in the example; the begin
attribute indicates the index of the first item to iterate from and the end attribute
indicates the last item to iterate to. If the begin attribute is not set, iteration begins at
the first item in the Collection, array, or Map; if the end attribute is not set, iteration
ends at the last element of the Collection, array, or Map. An additional attribute of
the <c:forEach> tag is the step attribute; it indicates the increment from one index
to the next, and defaults to 1. In addition to iterating through a Collection, array, or
Map, the <c:forEach> tag can be used to execute its body a number of times. To use
the <c:forEach> tag this way, its items attribute is omitted, and its begin and end
attributes are required.

The next new tag we see in the example is the <c:remove> tag. This tag is used to
remove a variable attached to the scope specified in its scope attribute. If no scope is
specified, the <c:remove> tag uses a default scope of page.

Chapter 5

[151]

There are some additional core JSTL tags not shown in the example. These remaining
tags are explained next.

The <c:if> tag is similar to the <c:when> tag; its body is executed if the expression
defined by its test attribute is true. The <c:if> tag has two optional attributes, a
var attribute that defines the name of a Boolean variable storing the results of the
tag's test attribute, and a scope attribute defining the scope of the var attribute. The
<c:if> tag should not be nested in a <c:choose> tag. Unlike that of the <c:when>
tag, the expression defined in the test attribute of multiple <c:if> tags is evaluated,
regardless of if a previous <c:if> expression resolved to true or not.

The <c:forTokens> tag iterates over a delimiter-separated string. The <c:
forTokens> tag has two required attributes: items and delims. The items attribute
value must be an expression resolving to a String, or a String constant. The value
of the delims attribute must be an expression or a String constant indicating the
characters to be used as delimiters. Each individual character in the delims attribute
will be used as a delimiter for the value of the item, similar to the way the java.
util.StringTokenizer class works. Additionally, the <c:forTokens> tag has a var
attribute that works essentially the same way as the var attribute of the <c:forEach>
tag. That is, it defines a name for the current item in its items attribute, allowing it to
be accessed in the body of the <c:forTokens> tag.

The <c:import> tag is similar to <jsp:include>, it includes the contents of a
relative or absolute URL into the rendered JSP; optionally, this tag can store the
contents of the included URL in a String or in an instance of java.io.Reader.

The <c:import> tag has one required attribute called url; the value for this attribute
is a String expression containing the URL to be imported. If we wish to store the
contents of the included URL in a String, then the var attribute must be used. The
value of this attribute is the name of the string that will hold the contents of the
included URL. If we wish to include the contents of the included URL in an instance
of java.io.Reader, then the varReader attribute must be used. The value of this
attribute is the name of the variable that will hold the contents of the included URL.
The <c:import> tag has an optional scope attribute that defines the scope of the
variable defined by the var or varReader attributes. If this attribute is not used, the
var or varReader variable will have a default scope of page.

The <c:redirect> tag redirects the browser to the URL specified in its url attribute.
It is equivalent to calling the sendRedirect() method of an instance of javax.
servlet.http.HttpServletResponse.

The <c:url> tag constructs a URL from the value of its url attribute and stores it
in a string whose name is defined in the tag's var attribute. The default scope of the
variable defined by the var attribute is page. This can be changed by using the tag's
scope attribute.

JSP Standard Tag Library

[152]

It is possible to pass parameters to the URL defined in the url attribute of the <c:
import>, <c:redirect>, or <c:url> tags. This is done by using the <c:param> tag.
This tag must be nested inside one of the above three tags. The <c:param> tag has
two attributes: a required name attribute defining the parameter name and a value
attribute defining the parameter value.

The last core JSTL tag is the <c:catch> tag. This tag catches any java.lang.
Throwable thrown inside its body.

java.lang.Throwable is the parent class of java.lang.Exception
and java.lang.Error; therefore any Exception or Error thrown
inside the body of the <c:catch> tag is also caught.

If a Throwable is thrown inside the body of the <c:catch> tag, control goes to
the line immediately following the closing </c:catch> tag. Any lines inside the
body of the <c:catch> tag that were processed before the Throwable is thrown,
are processed. The <c:catch> tag has a single optional attribute named var. This
attribute defines a variable to hold the Throwable that was thrown inside the body of
the <c:catch> tag. This variable always has a scope of page.

The following table lists all of the JSTL core tag libraries

Tag Description Example
<c:catch> Catches any Exception, Error or

Throwable thrown inside its body.
<c:catch var="e">
 <c:out value="1/0"/>
 <c:if test="e!=null">
 <c:out value=
 "e.message"/>
 </c:if>
</c:catch>

<c:choose> Used to wrap <c:when> and
(optionally) <c:otherwise> tags.
The body of the first <c:when> tag
containing a test expression that
evaluates to true is executed. If
none of the <c:when> tags contain
a test expression that evaluates
to true, then the body of the <c:
otherwise> tag is executed.

<c:choose>
 <c:when test="empty o">
 <c:out value=
 "o is empty"/>
 </c:when>
 <c:otherwise>
 <c:out value=
 "o is not empty"/>
 </c:otherwise>
</c:choose>

Chapter 5

[153]

Tag Description Example
<c:forEach> Iterates over an array,

Collection, or Map.
<c:forEach
items="${session.
arrayOrCollection}"
var="item">
 <c:out value="item =
${item}>

</c:forEach>

<c:if> Its body gets executed if the test
expression evaluates to true.

<c:if test="${a>b}">
 <c:out value="a is
greater than b"/>
</c:if>

<c:import> Imports content from the URL
indicated in the url attribute into
the rendered page.

<c:import url="http://foo.
com/somePage.jsp">
 <c:param name="someName"
value="some val"/>
</c:import>

<c:out> Outputs the value of the value
expression.

<c:out value="> is the
greater than symbol"
 escapeXml="true"/>.

<c:
otherwise>

Its body gets executed if none of
the test expressions in the <c:
when> tags nested in the same <c:
choose> tag evaluates to true.

See example for <c:choose>

<c:param> Sets a parameter for a URL defined
in the <c:url> or <c:import> tag.

See example for <c:import>.

<c:redirect> Redirects to the specified URL. <c:redirect url=
"http://ensode.net"/>

<c:remove> Removes a variable from the page
scope or the specified scope.

<c:remove var="varName"
scope="session"/>

<c:set> Sets a variable in the page scope or
the specified scope.

<c:set var="varName"
value="foo"
scope="session"/>

<c:url> Creates a URL variable. <c:url value="http://foo.
com" var="fooUrl"/>

<c:when> Its body gets executed when its test
expression evaluates to true.

See example for <c:choose>.

JSP Standard Tag Library

[154]

Formatting JSTL Tag Library
The formatting JSTL tag library provides tags that ease internationalization and
localization of web applications. This tag library allows displaying a page in different
languages, based on the user's locale, it also allows locale-specific formatting of dates
and currency.

The following example illustrates the use of the Formatting JSTL tag library.

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>
<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Format Tag Demo</title>
</head>
<body>
<jsp:useBean id="today" class="java.util.Date" />
<fmt:setLocale value="en_US" />
<fmt:bundle basename="ApplicationResources">
 <fmt:message key="greeting" />,

 <fmt:message key="proposal" />
 <fmt:formatNumber type="currency" value="42000" />.

 <fmt:message key="offer_ends" />
 <fmt:formatDate value="${today}" type="date" dateStyle="full" />.
 </fmt:bundle>

<fmt:setLocale value="es_ES" />
<fmt:bundle basename="ApplicationResources">
 <fmt:message key="greeting" />,

 <fmt:message key="proposal" />
 <fmt:formatNumber type="currency" value="42000" />.

 <fmt:message key="offer_ends" />
 <fmt:formatDate value="${today}" type="date" dateStyle="full" />
</fmt:bundle>
</body>
</html>

Chapter 5

[155]

This page's display basically greets the user, then proceeds to make a proposal (sales
pitch) followed by a price and an offer end date.

As this page is internationalized, the actual text of the page is stored in a
property file called a resource bundle. The resource bundle for the page is
called ApplicationResources.properties; this is set in the page via the
<fmt:bundle> tag.

The page displays the same message in English and Spanish; therefore two resource
bundles are needed, one for each locale. The locale to use is defined in the value
attribute of the <fmt:setLocale> tag.

A real application would not simultaneously display the same messages
in two languages; instead, it would detect the user's locale from the
request and use the appropriate resource bundle. If the user's locale
doesn't match any of the available resource bundles, then the default one
would be used.

The English (and default) version of ApplicationResources.properties looks
like this:

greeting=Hello
proposal=Obtain the secret of life, the universe and everything for
only
offer_ends=But hurry! Offer ends on

JSP Standard Tag Library

[156]

The Spanish version of the resource bundle is called
ApplicationResources_es.properties.

greeting=Hola
proposal=Obtenga el secreto the la vida, el universo y todo por tan
sólo
offer_ends=!Apresúrese! La oferta termina

As we can see, a resource bundle is nothing but a property file with keys and values.
The keys in each localized resource bundle must be the same; the value should vary
according to the locale.

In order to be accessible to JSP pages and Java code, resource bundles need to
be placed in any directory in the WEB-INF/classes directory folder or any of
its subdirectories in the WAR file where the application is deployed. If they are
placed in a subdirectory of the WEB-INF/classes directory, then the basename
attribute of the <fmt:bundle> tag must include each directory under this directory
separated by dots. For example, if the ApplicationResources.properties and
ApplicationResources_es.properties were placed under WEB-INF/classes/
net/ensode, the <fmt:bundle> tag would look like this:

<fmt:bundle basename="net.ensode.ApplicationResources">

As we can see, this looks like a fully qualified class name, but in reality we are
pointing to the resource bundle.

Resource bundle names for each locale must have the same base name as the base
resource bundle (ApplicationProperties, in this case), followed by an underscore,
and followed by the appropriate locale (es in this case). The locale can specify a
language only (en or es, for example) , or a language and country (en_US or es_ES,
for example). If no country is specified in the locale, any country whose primary
language matches the locale will use the resource bundle for that language.

The above example uses es_ES as the locale, assuming every page that
is in Spanish comes from Spain; obviously this wouldn't work in a real
application and was done this way for simplicity.

The <fmt:message> tag looks for a key in the resource bundle matching its key
attribute and displays its value on the page. Though not illustrated in the example,
sometimes resource bundle values can have parameters; these parameters are
substituted at run time with appropriate values. Parameters are designated by an
integer between curly braces, as in the following example:

personalGreeting=Hello {0}

Chapter 5

[157]

The {0} in this property is a parameter. Parameters can be substituted by the
appropriate values at run time by using the <fmt:param> tag. This tag must be
nested inside an <fmt:message> tag. The <fmt:message> tag has an attribute named
value, the value of which can be a String constant or Unified Expression Language
expression; it is used to substitute the parameter with this value.

The next formatting tag we see in the example is the <fmt:formatNumber> tag. This
tag formats a number according to the locale; some locales use a comma to separate
thousands and a dot as a decimal separator, while for others is the other way around;
as can be seen in the previous screenshot, the <fmt:formatNumber> tag will take
care of this for us. Another useful attribute of the <fmt:formatNumber> tag is the
type attribute, which has three valid values: number, percent, or currency. As can
be seen in the example, if the type attribute is set to currency, then the appropriate
currency symbol for the locale is automatically added to the number.

The next new formatting tag we see in the example is the <fmt:formatDate>; this
tag will take a Date object specified by its value attribute and format it appropriately
for the given locale. In addition to translating the date into the appropriate language,
this tag will place the day of the week, the day of the month, the month and the year
in the appropriate order for the corresponding locale. It will also use the correct
capitalization for the first letter of the month. The dateStyle attribute of the <fmt:
formatDate> tag has the following valid values: full, long, medium, short, and
default; if no value is specified, default is used.

The Format tag library tags we have covered so far are the most commonly used; the
following table lists all the JSTL formatting library tags:

Tag Description Example
<fmt:bundle> Load a resource bundle to be

used inside its body.
<fmt:bundle
 basename="resbund">
 <fmt:message
 key="greeting">
</fmt:bundle>

<fmt:formatDate> Formats the date specified by
its value attribute, optionally
using a specified value and
pattern.

<fmt:formatDate
value="${today}"
 pattern=
 "MM/dd/yyyy"/>

<fmt:formatNumber> Formats the number specified
by its value attribute according
to the current locale. Can be
used to format the number
as currency or percentage,
depending on the value of its
optional type attribute.

<fmt:formatNumber
value="42000" />

JSP Standard Tag Library

[158]

Tag Description Example
<fmt:message> Displays a localized message

corresponding to the key
defined in its key attribute.

<fmt:message
key="offer_ends" />

<fmt:param> Substitutes a parameter in the
enclosing <fmt:message> tag.

<fmt:param
value="someVal"/>

<fmt:parseDate> Parses a String containing a date
into a Date object.

<fmt:parseDate
 value="03/31/2007"
 pattern=
 "MM/dd/yyyy"
 var="parsedDate"/>

<fmt:parseNumber> Parses a numeric String into a
Long or Double object.

<fmt:parseNumber
value="42,000.00"
 var="parsedNumber"/>

<fmt:
requestEncoding>

Used to set the request's
character encoding.

<fmt:requestEncoding
key="ISO-8859-1"/>

<fmt:setBundle> Sets the resource bundle to use
in the specified scope. Default
scope is page.

<fmt:setBundle
 baseName="resbund"
 var="bundle"
 scope="session"/>

<fmt:setLocale> Sets the locale to use in the
specified scope. Default scope
is page.

<fmt:setLocale
 value="en_US" />

<fmt:setTimeZone> Sets the time zone to use in the
specified scope. Default scope
is page.

<fmt:setTimeZone
 value="EST"
 var=
 "sessionTimeZone"
 scope="session"/>

<fmt:timeZone> Sets the time zone to use inside
its body.

<fmt:timeZone
value="EST">
 <fmt:formatDate
 value="${today}"/>
</fmt:timeZone>

SQL JSTL Tag Library
The SQL JSTL tag library allows us to execute SQL queries from JSP pages. As this
tag library mixes presentation and database access code, it should only be used for
prototyping and for writing simple "throwaway" applications. For more complex
applications, it is always a good idea to follow the DAO and MVC design patterns.

Chapter 5

[159]

The following example illustrates the most commonly used tags in the SQL JSTL
Tag Library.

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>
<%@ taglib uri="http://java.sun.com/jsp/jstl/sql" prefix="sql"%>
<%@taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>SQL Tag Demo</title>
</head>
<body>
<sql:setDataSource dataSource="jdbc/__CustomerDBPool" />
<sql:transaction>
 <sql:update>
 insert into CUSTOMERS (CUSTOMER_ID, FIRST_NAME, LAST_NAME) values
(((select max(CUSTOMER_ID) from customers) + 1), ?, ?)
 <sql:param value="${param.firstName}" />
 <sql:param value="${param.lastName}" />
 </sql:update>
</sql:transaction>
<p>Successfully inserted the following row into the CUSTOMERS table:</
p>
<sql:query var="selectedRows"
 sql="select FIRST_NAME, LAST_NAME from customers where FIRST_NAME =
? and LAST_NAME = ?">
 <sql:param value="${param.firstName}" />
 <sql:param value="${param.lastName}" />
</sql:query>
<table border="1" cellpadding="0" cellspacing="0">
 <tr>
 <td>First Name</td>
 <td>Last Name</td>
 </tr>
 <c:forEach var="currentRow" items="${selectedRows.rows}">
 <tr>
 <td><c:out value="${currentRow.FIRST_NAME}" /></td>
 <td><c:out value="${currentRow.LAST_NAME}" /></td>
 </tr>
 </c:forEach>
</table>
</body>
</html>

JSP Standard Tag Library

[160]

After packaging this JSP in a WAR file, deploying the WAR file, and pointing the
browser to the JSP's URL, we should see a page like the following:

Like most of our examples, the above page is pretty simplistic, and does not
necessarily represent what would be done in an actual application. The page inserts
a row into the CUSTOMERS table and then queries the table for rows matching the
values inserted. A real application (keeping in mind that the SQL tag library should
only be used for very simple applications) would typically insert values obtained
from request parameters into the database. It would be unlikely for the same page
to query the database for the data just inserted; this would probably be done in a
separate page.

The first JSTL SQL tag we see in the example is the <sql:setDataSource> tag. This
tag sets the data source to be used for database access. The data source can either
be obtained via JNDI by using its JNDI name as the value of this tags datasource
attribute or by specifying a JDBC URL, user name, and password via the url,
user, and password attributes. This example uses the first approach. In order for
this approach to work correctly, a <resource-ref> element must be added to the
application's web.xml file.

<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="2.5"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.
sun.com/xml/ns/javaee/web-app_2_5.xsd">
 <resource-ref>
 <res-ref-name>jdbc/__CustomerDBPool</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
</web-app>

Chapter 5

[161]

The <res-ref-name> subelement of the <resource-ref> element contains the
JNDI name of the data source. This needs to be set up in the application server. The
example uses the data source we used in Chapter 4 (refer to the readme.txt file for
Chapter 4 for instructions on setting up this data source).

The <res-type> subelement of the <resource-ref> element contains the fully
qualified name of the resource to be obtained via JNDI; for data sources, this will
always be javax.sql.DataSource.

The <res-auth> subelement of the <resource-ref> element should have a value
of Container when using the <resource-ref> element to define a data source as
a resource. This allows the application server to use the credentials set up in the
connection pool corresponding to the data source to log into the database.

No Suitable Driver SQL Exception
Sometimes the <sql:setDataSource> tag will result in a
java.sql.SQLException: No suitable driver exception when
using its datasource attribute to locate the data source via JNDI. This
typically means that we forgot to modify the application's web.xml as
described above.

As we mentioned before, an alternative way of using the <sql:setDataSource>
tag is to specify the database connection URL and credentials. Had we used this
approach in the example, the <sql:setDataSource> tag would have looked
like this:

<sql:setDataSource url="jdbc:derby://localhost:1527/customerdb"
 user="dev" password="dev" />

The attributes used are self-explanatory. The url attribute should contain the JDBC
URL for the connection. The user and password attributes should contain the user
name and password used to log in to the database, respectively.

The next JSTL SQL tag we see in the example is the <sql:transaction> tag; this tag,
unsurprisingly, wraps any <sql:query> and <sql:update> tags it contains in
a transaction.

Next, we see the <sql:update> tag, which is used to execute any queries that modify
data in the database. It can be used for INSERT, UPDATE, or DELETE SQL statements.
As can be seen in the example, queries inside this tag can have one or more
parameters. Just as when using JDBC Prepared Statements, question marks are used
as placeholders for parameters. The <sql:param> tag is used to set the values of
any parameters in a query defined in an <sql:update> or an <sql:query> tag. The
<sql:param> tag sets the value for its containing tag via its value attribute, which
may contain a String constant or a Unified Expression Language expression.

JSP Standard Tag Library

[162]

The <sql:query> tag is used to query data from the database via a SELECT
statement. The query's result set is stored in a variable defined by this tag's var
attribute. By default, the var attribute has a scope of page; this can be changed
by using the <sql:query> scope attribute and setting its value to the appropriate
scope (page, request, session, or application). As can be seen in the example,
we can iterate through the variable defined by this tag's var attribute by using a <c:
forEach> tag.

The following table lists all the JSTL SQL tags:

Tag Description Example
<sql:dateParam> Sets the value for a date

parameter in an
<sql:query> or
<sql:update> tag.

See example for <sql:
query>.

<sql:param> Sets the value for a text or
numeric parameter in an
<sql:query> or <sql:
update> tag.

See example for <sql:
update>.

<sql:query> Executes the SQL query
defined in its sql attribute
and optionally attaches the
resulting result set into the
specified scope using the
specified variable name.

<sql:query
 sql=
 "select * from table
 where last_update
 < ?"
 var="selectedRows">
<sql:dateParam

 value=
 "${someDate}"/>
</sql:query>

<sql:setDataSource> Defines the data source to be
used at the specified scope.
If no scope is specified, the
default scope is page. The
data source can be obtained
via a JNDI lookup or by
specifying a JDBC URL
through the url, user, and
password attributes.

<sql:setDataSource
dataSource="jdbc/__
CustomerDBPool" />

Chapter 5

[163]

Tag Description Example
<sql:transaction> Wraps any <sql:query>

and <sql:update>
tags inside its body in a
transaction.

<sql:transaction>
 <sql:update
 sql="update table
set some_col = ?">
 <sql:param
value="someValue"/>
 </sql:update>
 <sql:update
 sql="update table2
set some_col = ?">
 <sql:param
value="someValue"/>
 </sql:update>
</sql:transaction>

<sql:update> Executes an SQL INSERT,
UPDATE, or DELETE
statement.

<sql:update
 sql="update table
set some_col = ?">
 <sql:param
value="someValue"/>
</sql:update>

XML JSTL Tag Library
The XML JSTL tag library provides an easy way to parse XML documents and to do
Extensible Stylesheet Language transformations (XSLT). This tag library uses XPath
expressions navigate through elements in an XML document.

XPath is an expression language used for finding information in
an XML document, or for making calculations based on the content
of an XML document. For more information about XPath, see
http://www.w3.org/TR/xpath.

The following example illustrates the most commonly used tags in the XML JSTL
Tag Library.

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>
<%@ taglib uri="http://java.sun.com/jsp/jstl/xml" prefix="x"%>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>

<c:import url="customers.xml" var="xml" />
<x:parse doc="${xml}" var="doc" />
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

JSP Standard Tag Library

[164]

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>XML Tag Demo</title>
</head>
<body>
<table cellpadding="0" cellspacing="0" border="1">
 <tr>
 <td>First Name</td>
 <td>Last Name</td>
 <td>Email</td>
 </tr>
 <x:forEach select="$doc/customers/customer">
 <tr>
 <td>
 <x:out select="firstName" />
 </td>
 <td>
 <x:out select="lastName" /></td>
 <td>
 <x:choose>
 <x:when select="email">
 <x:out select="email" />
 </x:when>
 <x:otherwise>
 <c:out value="N/A" />
 </x:otherwise>
 </x:choose>
 </td>
 </tr>
 </x:forEach>
</table>
</body>
</html>

The first thing we should notice in this example is the use of the core JSTL tag <c:
import> to import an XML file from a URL. The value of the url attribute defines
the URL where the XML file can be located; it can be a relative or absolute URL. In
the example, the customers.xml file is in the same directory as the JSP, therefore
a relative path is used to obtain it. The customers.xml has customer information
including first name, last name, and email address it is shown next.

<?xml version="1.0" encoding="UTF-8"?>
<customers>
 <customer>
 <firstName>Karl</firstName>
 <lastName>Smith</lastName>
 <email>karls@nonexistent.org</email>
 </customer>

Chapter 5

[165]

 <customer>
 <firstName>Jenny</firstName>
 <lastName>Conte</lastName>
 <email>jenny@notreal.com</email>
 </customer>
 <customer>
 <firstName>Rhonda</firstName>
 <lastName>Benedict</lastName>
 </customer>
</customers>

After packaging these two files in a WAR file and visiting the JSP's URL, we should
see a page like the following:

The first JSTL XML tag that we see in the example is the <x:parse> tag. This tag
parses an XML document and stores it in the variable defined by its var attribute.
The XML document to parse is defined in its doc attribute.

The XML JSTL tag library contains several tags that are analogous to similar tags in
the Core JSTL tag libraries; these tags include: <x:if>, <x:choose>, <x:when>, <x:
otherwise>, <x:forEach>, <x:param>, and <x:set>. Usage of these tags is very
similar to their core tag counterparts. The main difference is that these tags contain
a select attribute containing an XPath expression to evaluate, instead of the value
attribute that the corresponding core tags contain. The example illustrates the usage
of most of these tags.

The next JSTL XML tag we see in the example is the <x:forEach> tag. This tag
iterates over the elements of an XML document. Elements to iterate over are specified
as an XPath expression through the select attribute.

The next JSTL XML tag we see in the example is the <x:out> tag, which outputs the
value of the XPath expression defined in its select attribute.

Next, we see the <x:choose> tag, which is the parent tag of the <x:when> and
(optionally) <x:otherwise> tags. The body of the first nested <x:when> tag
containing an XPath expression evaluating to true as its select attribute is executed;

JSP Standard Tag Library

[166]

select expressions for subsequent <x:when> attributes are not evaluated after one of
them evaluates to true. If no select attributes for any of the <x:when> tags evaluate
to true, the body of the optional <x:otherwise> tag is executed.

An additional XML JSTL tag is the <x:transform> tag, which is used to do XSLT
transformations on XML documents. This tag is typically used with two attributes.
The xml attribute indicates the location of the XML document to transform; it can be
imported via the <c:import> tag as illustrated in the example. The xslt attribute
indicates the XSL stylesheet used to transform the document. This stylesheet can also
be imported via the <c:import> tag.

The following table lists all of the JSTL XML tags.

Tag Description Example
<x:choose> Used to wrap <x:when> and

(optionally) <x:otherwise>
tags. The body of the first <x:
when> tag containing a select
expression that evaluates to
true is executed. If none of the
<x:when> tags contain a test
expression that evaluates to
true, then the body of the <x:
otherwise> tag is executed.

See example for <x:forEach>.

<x:forEach> Iterates over the elements of
an XML document. Elements
to iterate over are specified
through the select attribute.

<x:forEach select="$doc/
customers/customer">
<tr>
 <td>
 <x:out select="firstName" />
 </td>
 <td>
 <x:out select="lastName" />
 </td>
 <td>
 <x:choose>
 <x:when select="email">
 <x:out select="email" />
 </x:when>
 <x:otherwise>
 <c:out value="N/A" />
 </x:otherwise>
 </x:choose>
 </td>
 </tr>
 </x:forEach>

Chapter 5

[167]

Tag Description Example
<x:
otherwise>

Its body gets executed if none of
the test expressions in the <x:
when> tags nested in the same
<x:choose> tag evaluates
to true.

See example for <x:forEach>.

<x:out> Outputs an XPath expression
defined by the select attribute.

See example for <x:forEach>.

<x:param> Adds a parameter to the
containing <x:transform>
tag.

See example for <x:transform>.

<x:parse> Parses an XML document and
stores it in the variable defined
by its var attribute.

<x:parse doc="${xml}"
 var="doc" />

<x:set> Saves the result of the XPath
expression defined in its select
attribute into a variable in the
specified scope. If no scope is
defined, a default scope of page
is used.

<x:set var="custEmail"
 select="email"/>

<x:
transform>

Transforms the XML document
defined by the xml attribute
using the XSL stylesheet defined
by the xslt attribute.

<x:transform
 xml="${someXmlDoc}"
 xslt="${xslt}">
 <x:param name="paramName"
 value="${paramValue}"/>
</x:transform>

<x:when> Its body gets executed when its
select expression evaluates
to true.

See example for <x:forEach>.

JSTL Functions
JSTL contains a number of functions that take Unified Expression Language
expressions as parameters. All JSTL functions except one are used exclusively for
String manipulation. The exception is the fn:length() function, which can take a
String, Collection, or array as a parameter; it returns the length of the String, the
size of the Collection, or the length of the array, depending on what parameter is
passed to it. The following JSP illustrates the use of JSTL functions.

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>
<%@ taglib uri="http://java.sun.com/jsp/jstl/functions" prefix="fn"%>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>

JSP Standard Tag Library

[168]

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Function Tag Demo</title>
</head>
<body>
<c:set var="nameArr"
 value="${fn:split(‘Kevin,Danielle,Alex,Beatrice',',')}" />

We have a list of ${fn:length(nameArr)} names, here they are:

 <c:forEach var="currentName" items="${nameArr}">

 ${fn:toUpperCase(currentName)}

 </c:forEach>

</body>
</html>

After packaging the above JSP in a WAR file, deploying it, and pointing the browser
to its URL, we should see a page like the following:

The above JSP illustrates the use of some of the JSTL functions. The fn:split()
function splits a String into an array of Strings, using the character specified by its
second parameter as a delimiter.

Notice that the Strings inside the fn:split() function are enclosed
inside single quotes. JSTL allows this since using double quotes for the
Strings would have resulted in illegal syntax because the fn:split()
function is already inside double quotes.

Chapter 5

[169]

In the example, the fn:length() function returns the number of elements in the
array we created when the fn:split() function was executed. As we mentioned
earlier, the fn:split() can also take a Collection or a String as a parameter.
When applied to a Collection, the function returns the number of elements in it;
when applied to a String, the function returns the number of characters in the String.

The next function illustrated in the example is fn:toUpperCase(), which simply
makes every alphabetical character in the String it takes as a parameter upper
case. There are many other JSTL functions, all of them are very intuitive to use. The
following table lists all the JSTL functions.

Function Description Example
fn:contains(String,
String)

Returns a Boolean
indicating if the second
parameter is contained in
the first one.

${fn:
contains("environment",
 "iron")}

fn:containsIgnoreCase(
String,
 String)

Case insensitive version of
fn:contains().

${fn:
containsIgnoreCase(
 "environment",
 "Iron")}

fn:endsWith(String,
String)

Returns a Boolean
indicating if the first
parameter ends with a
String equal to the second
parameter.

${fn:
endsWith("GlassFish",
 "Fish")}

fn:escapeXml(String) Returns a String with all
XML characters in the
parameter escaped into
their respective XML
character entity code.

${fn:
escapeXml("<html>")}

fn:indexOf(String,
String)

Returns an int indicating
the index of the second
parameter in the first
parameter. Returns -1 if
the second parameter is
not a substring of the first
parameter.

${fn:
indexOf("GlassFish",
 "Fish")}

fn:join(String[],
String)

Returns a String composed
of the elements in the
first parameter, using the
second parameter as
a delimiter.

${fn:join(arrayVar,",
")}

JSP Standard Tag Library

[170]

Function Description Example
fn:length(Object) Returns the length of

an array, the size of a
Collection, or the length of
a String, depending on the
type of the parameter.

${fn:length("String,
Collection or Array")}

fn:replace(String,
String, String)

Returns a String replacing
every instance of the
second parameter in the
first parameter with the
third parameter.

${fn:
replace("CrystalFish",
 "Glass")}

fn:startsWith(String,
String)

Returns a Boolean
indicating if the first
parameter starts with the
second parameter.

${fn:
startsWith("GlassFish",
 "Glass")}

fn:split(String,
String)

Returns an array of Strings
containing elements in
the first parameter as
delimited by the second
parameter.

${fn:split("Eeny,
meeny",",")}

fn:substring(String,
int, int)

Returns a String containing
the substring in the first
parameter, starting at the
index indicated by the
second parameter and
ending just before the
index indicated by the
third parameter.

${fn:substring(
 "0123456789",3, 6)
}

fn:
substringAfter(String,

 String)

Returns a String containing
the substring in the first
parameter starting after
the first occurrence of the
second parameter until the
end of the first parameter.

${fn:substringAfter(
 "GlassFish",
"Glass")}

fn:
substringBefore(String,
String)

Returns a String containing
the substring in the
first parameter starting
from the start of the first
parameter and ending just
before the first occurrence
of the second parameter.

${fn:substringBefore(
 "GlassFish",
"Fish")}

Chapter 5

[171]

Function Description Example
fn:toLowerCase(String) Returns a String containing

a version of the parameters
with all alphabetical
characters as lower case.

${fn:toLowerCase(
 "GlassFish")}

fn:toUpperCase(String) Returns a String containing
a version of the parameters
with all alphabetical
characters as upper case.

${fn:toUppserCase(
 "GlassFish")}

fn:trim(String) Returns a String containing
a modified version of
the parameter with
all whitespace at the
beginning and end of the
parameter removed.

${fn:trim(" GlassFish
")}

Summary
This chapter covered all JSP Standard Tag Library tags, including the core,
formatting, SQL, and XML tags, and also covered JSTL functions, with examples
illustrating the most common JSTL tags and functions.

JavaServer Faces
In this chapter, we will cover JavaServer Faces (JSF), the standard component
framework of the Java EE platform. JSF applications consist of a number of JSPs for
the user interface (other view technologies are supported, but JSP is the default), a
series of managed beans that can serve to hold data entered in the JSPs and can also
serve as controllers, and a configuration file declaring all the managed beans and
page navigation for the application.

Please note that JSF is a component framework that can use several
different view technologies to generate the user interface. When using JSP
as its view technology, tag libraries are used to render JSF components
as HTML input fields. This chapter uses the terms "tag" and
"component" interchangeably.

Developing Our First JSF Application
To illustrate basic JSF concepts, we will develop a simple application consisting of
two JSPs and a single managed bean.

As we mentioned in this chapter's introduction, the default view technology for JSF
is JSP. A "JSF-enabled" JSP is nothing but a standard JSP using a number of
JSF-specific tags. The following example shows what a typical JSF JSP looks like:

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

JavaServer Faces

[174]

<style type="text/css">
.leftAlign { text-align: left;}
.rightAlign { text-align: right;}
</style>
<title>Enter Customer Data</title>
</head>
<body>
<f:view>
 <h:form>
 <h:messages></h:messages>
 <h:panelGrid columns="2"
 columnClasses="rightAlign,leftAlign">
 <h:outputText value="First Name:">
 </h:outputText>
 <h:inputText label="First Name"
 value="#{Customer.firstName}"
 required="true">
 <f:validateLength minimum="2"
 maximum="30"></f:validateLength>
 </h:inputText>
 <h:outputText value="Last Name:"></h:outputText>
 <h:inputText label="Last Name"
 value="#{Customer.lastName}"
 required="true">
 <f:validateLength minimum="2"
 maximum="30"></f:validateLength>
 </h:inputText>
 <h:outputText value="Email:">
 </h:outputText>
 <h:inputText label="Email" value="#{Customer.email}">
 <f:validateLength minimum="3"
 maximum="30"></f:validateLength>
 </h:inputText>
 <h:panelGroup></h:panelGroup>
 <h:commandButton action="save"
 value="Save"></h:commandButton>
 </h:panelGrid>
 </h:form>
</f:view>
</body>
</html>

Chapter 6

[175]

The following screenshot illustrates how this JSP renders in the browser.

The above screenshot, of course, was taken after entering some data in every text
field; originally, each text field was blank.

Pretty much any JSF-enabled JSP will include the two tag libraries illustrated in the
example. The first tag library (<%@ taglib uri="http://java.sun.com/jsf/core"
prefix="f"%>) is the core JSF tag library, by convention, the prefix "f" (for "faces") is
used when using this tag library.

The second tag library (<%@ taglib uri="http://java.sun.com/jsf/html"
prefix="h"%>) is for tags that render HTML components; by convention, the prefix
"h" (for "HTML") is used when using this tag library.

The example opposite contains some of the most frequently used JSF tags. The first
tag we see in the example is the <f:view> tag, which tells the container that JSF is
used to manage the components inside of it. Any JSF tags (core, HTML, or custom)
must be placed inside the <f:view> tag.

The next tag we see is the <h:form> tag. This tag generates an HTML form when the
JSP is rendered. As can be seen in the example, there is no need to specify an action
or a method attribute for this tag; as a matter of fact, there is no action attribute nor
method attribute for this tag. The action attribute for the rendered HTML form will
be generated automatically, and the method attribute will always be "post".

The next tag we see is the <h:messages> tag. As its name implies, this tag is used
to display any messages. As we will see shortly, JSF can automatically generate
validation messages; these will be displayed inside this tag. Additionally, arbitrary
messages can be added programmatically via the addMessage() method defined in
javax.faces.context.FacesContext.

JavaServer Faces

[176]

The next JSF tag we see is <h:panelGrid>. This tag is roughly equivalent to an
HTML table, but it works a bit differently. Instead of declaring rows and columns,
the <h:panelGrid> tag has a columns attribute; the value of this attribute indicates
the number of columns in the table rendered by this tag. As we place components
inside this tag, they will be placed in a row until the number of columns defined in
the columns attribute is reached, and then the next component will be placed in the
next row. In the example, the value of the columns attribute is two, therefore the first
two tags will be placed in the first row, the next two will be placed in the second
row, and so forth.

Another interesting attribute of <h:panelGrid> is the columnClasses attribute. This
attribute assigns a CSS class to each column in the rendered table. In the example,
two CSS classes (separated by a comma) are used as the value for this attribute. This
has the effect of assigning the first CSS class to the first column, and the second one
to the second column. Had there been three or more columns, the third one would
have gotten the first CSS class, the fourth one the second one, and so on, alternating
between the first one and the second one. To clarify how this works, the next code
snippet illustrates a portion of the source of the HTML markup generated by our
sample JSP.

<table>
 <tbody>
 <tr>
 <td class="rightAlign">
 First Name:
 </td>
 <td class="leftAlign">
 <input type="text" name="j_id_id18:j_id_id27" /></td>
 </tr>
 <tr>
 <td class="rightAlign">
 Last Name:
 </td>
 <td class="leftAlign">
 <input type="text"
 name="j_id_id18:j_id_id34" />
 </td>
 </tr>
 <tr>
 <td class="rightAlign">Email:</td>
 <td class="leftAlign">
 <input type="text" name="j_id_id18:j_id_id42" />
 </td>
 </tr>
 <tr>

Chapter 6

[177]

 <td class="rightAlign"></td>
 <td class="leftAlign">
 <input type="submit"
 name="j_id_id18:j_id_id49" value="Save" />
 </td>
 </tr>
 </tbody>
</table>

Notice how each <td> tag has an alternating CSS tag of "rightAlign" or
"leftAlign"; we achieved this by assigning the value "rightAlign,leftAlign" to
the columnClasses attribute of <h:panelGrid>.

At this point in the example, we start adding components inside <h:panelGrid>.
These components will be rendered inside the table rendered by <h:panelGrid>.
As we mentioned before, the number of columns in the rendered table is defined by
the columns attribute of <h:panelGrid>. Therefore, we don't need to worry about
columns (or rows); we just start adding components and they will be placed in the
right place.

The next tag we see is the <h:outputText> tag. This tag is similar to the core
JSTL <c:out> tag. It outputs the text or expression in its value attribute to the
rendered page.

Next, we see the <h:inputText> tag. This tag generates a text field in the rendered
page; its label attribute is used for any validation messages. It lets the user know
what field the message refers to.

Although it is not required for the value of the label attribute of <h:
inputText> to match the label displayed on the page, it is highly
recommended to use this value. This will let the user know exactly what
field the message is referring to.

Of particular interest is the tag's value attribute. What we see as the value for
this attribute is a value binding expression. What this means is that this value is
tied to a property of one of the application's managed beans. In the example, this
particular text field is tied to a property called firstName in a managed bean called
Customer. When a user enters a value for this text field and submits the form, the
corresponding property in the managed bean is updated with this value. The tag's
required attribute is optional and valid values for it are true and false. If this
attribute is set to true, the container will not let the user submit the form until the
user enters some data for the text field.

JavaServer Faces

[178]

If the user attempts to submit the form without entering a required value, the
page will be reloaded and an error message will be displayed inside the
<h:messages> tag.

The above screenshot illustrates the default error message shown when the user
attempts to save the form in the example without entering a value for the customer's
first name. The first part of the message ("First Name") is taken from the value of
the label attribute of the corresponding <h:inputTextField> tag. The text of the
message can be customized, as well as its style (font, color, etc.). We will cover how
to do this later in this chapter.

Having an <h:messages> tag on every JSF page is a good idea; without
it, the user might not see validation messages and will have no idea of
why the form submission is not going through.

Each <h:inputField> tag in our example has a nested <f:validateLength> tag.
As its name implies, this tag validates that the entered value for the text field is
between a minimum and maximum length. Minimum and maximum values are
defined by the tag's minimum and maximum attributes. <f:validateLength> is one
of the standard validators included with JSF. Just as with the required attribute of
<h:inputText>, JSF will automatically display a default error message when a user
attempts to submit a form with a value that does not validate.

Chapter 6

[179]

Again, the default message and style can be overridden; we will cover how to do this
in the next section.

In addition to <f:validateLength> JSF includes two other standard validators: <f:
validateDoubleRange> validates that the value is a valid Double value between
the two values specified by the tag's minimum and maximum attributes, inclusive. <f:
validateLongRange> validates that the value is a valid Long value between the
values specified by the tag's minimum and maximum attributes.

<h:panelGroup> is the next new tag in the example. Typically, <h:panelGroup>
is used to group several components together so that they occupy a single cell in
an <h:panelGrid>. This can be accomplished by adding components inside <h:
panelGroup> and adding <h:panelGroup> to <h:panelGrid>. As can be seen in the
example, this particular instance of <h:panelGroup> has no child components. In
this particular case, the purpose of <h:panelGroup> is to have an "empty" cell and
have the next component, <h:commandButton>, align with all other input fields in
the form.

<h:commandButton> renders an HTML input field in the browser, just as with
standard HTML and JSPs; its purpose is to submit the form. Its value attribute
simply sets the button's label. This tag's action attribute is used for navigation; the
next JSP to show is based on the value of this attribute. The action attribute can
have a String constant or Unified Expression Language as its value; additionally
it can have a method binding expression, meaning that it can point to a method
in a managed bean that returns a String. We will see an example of a <h:
commandButton> tag whose action attribute is a method-binding expression later in
this chapter.

JavaServer Faces

[180]

Even though the label for the button reads Save, clicking on the button
won't actually save any data. Later in this chapter, we will see a more
advanced version of this application that will actually implement
this functionality.

Navigation rules and managed beans are defined in a configuration file called
faces-config.xml. This file must be placed in the WEB-INF folder of the
application's WAR file. The faces-config.xml file for our example application
looks like this:

<faces-config xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://
 java.sun.com/xml/ns/javaee/web-facesconfig_1_2.xsd"
 version="1.2">

 <managed-bean>
 <managed-bean-name>Customer</managed-bean-name>
 <managed-bean-class>
 net.ensode.glassfishbook.jsf.Customer
 </managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 </managed-bean>

 <navigation-rule>
 <from-view-id>/customer_data_entry.jsp</from-view-id>
 <navigation-case>
 <from-outcome>save</from-outcome>
 <to-view-id>/confirmation.jsp</to-view-id>
 </navigation-case>
 </navigation-rule>
</faces-config>

The <managed-bean> element defines a managed bean that can be used for
value-binding and method binding expressions. Its nested <managed-bean-name>
element defines a logical name for this managed bean. The <managed-bean-class>
element must contain the fully qualified name of the managed bean's class. The
<managed-bean-scope> element indicates the scope of the bean. Valid values for
this element include request, session, application, and none. The managed bean
will be attached as an attribute of the specified scope. Several managed beans can be
declared in this manner. In our example application, there is only one managed bean.
Its source code is shown in the following code listing:

package net.ensode.glassfishbook.jsf;

public class Customer
{

Chapter 6

[181]

 private String firstName;

 private String lastName;

 private String email;

 public String getEmail()
 {
 return email;
 }

 public void setEmail(String email)
 {
 this.email = email;
 }

 public String getFirstName()
 {
 return firstName;
 }

 public void setFirstName(String firstName)
 {
 this.firstName = firstName;
 }

 public String getLastName()
 {
 return lastName;
 }

 public void setLastName(String lastName)
 {
 this.lastName = lastName;
 }
}

Notice that there is nothing special about this bean. It is a standard JavaBean with
private properties and corresponding getter and setter methods.

The next tag we see in faces-config.xml is the <navigation-rule> tag. This tag
defines where a page will navigate after a certain outcome. In this example, this
navigation rule ties to the <h:commandButton> tag that had a value for its action
attribute of "save". When the form is submitted, the container will look for an action
of "save", as defined in the <from-outcome> element in the above faces-config.
xml, and navigate to the JSP defined in the <to-view-id> element (/confirmation.
jsp in this case). Each <navigation-rule> element must have only one <from-
view-id> child element, but it can have several <navigation-case> elements, one
for each outcome.

JavaServer Faces

[182]

Same page reloading when clicking on a button or link that should
navigate to another page?
When JSF does not recognize the value of a <to-view-id> element in
faces-config.xml, it will by default navigate to the same page that
was displayed in the browser when the user clicked on a button or link
that is meant to navigate to another page.
Notice that the values for <from-view-id> and <to-view-id>
start with a slash and match the exact name and location of a JSP in
the application. If there is a typo in the value for one or both of these
elements, navigation will not work correctly. A common mistake is to
forget to add the slash at the beginning of these values.

As can be seen in faces-config.xml, when the user clicks on the "save" button
from the customer_data_entry.jsp, our application will navigate to a JSP called
confirmation.jsp. The source for this JSP looks like this:

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title>Customer Data Entered</title>
</head>
<body>
<p>The following data was entered:</p>
<f:view>
 <h:panelGrid columns="2">
 <h:outputText value="First Name:"></h:outputText>
 <h:outputText value="#{Customer.firstName}"></h:outputText>
 <h:outputText value="Last Name:"></h:outputText>
 <h:outputText value="#{Customer.lastName}"></h:outputText>
 <h:outputText value="Email:"></h:outputText>
 <h:outputText value="#{Customer.email}"></h:outputText>
 </h:panelGrid>
</f:view>
</body>
</html>

Chapter 6

[183]

There are no tags we haven't seen before in this JSP. One thing to notice about it is
that it is using value-binding expressions as the value for all of its <h:outputText>
tags. As these value-binding expressions are the same expressions used in the
previous page for the <h:inputText> tags, their values will correspond to the data
the user entered.

The last piece of the puzzle is the application's web.xml file.

<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="2.5"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://
 java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
 <display-name>Archetype Created Web Application</display-name>
 <servlet>
 <display-name>FacesServlet</display-name>
 <servlet-name>FacesServlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>FacesServlet</servlet-name>
 <url-pattern>*.jsf</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>FacesServlet</servlet-name>
 <url-pattern>/faces/*</url-pattern>
 </servlet-mapping>
</web-app>

A JSF application is a standard web application; therefore a standard web.xml file
is needed. As can be seen in the example, a single servlet is added to the web.xml
configuration file; this servlet is included in the JSF libraries.

JavaServer Faces

[184]

It is customary to use a suffix mapping of .jsf or a prefix mapping of /faces/ to
access the FacesServlet. This example declares both mappings.

Custom Data Validation
In addition to providing standard validators for our use, JSF allows us to create
custom validators. This can be done in one of two ways: by creating a custom
validator class or by adding validation methods to our managed beans.

Creating Custom Validators
In addition to the standard validators, JSF allows us to create custom validators by
creating a Java class implementing the javax.faces.validator.Validator interface.

The following class implements an email address validator, which we will use to
validate the email text input field in our customer data entry screen.

package net.ensode.glassfishbook.jsfcustomval;

import javax.faces.application.FacesMessage;
import javax.faces.component.UIComponent;
import javax.faces.component.html.HtmlInputText;
import javax.faces.context.FacesContext;
import javax.faces.validator.Validator;
import javax.faces.validator.ValidatorException;

public class EmailValidator implements Validator
{

 public void validate(FacesContext facesContext,
 UIComponent uiComponent,
 Object value) throws ValidatorException
 {
 org.apache.commons.validator.EmailValidator emailValidator
 = org.apache.commons.validator.EmailValidator
 .getInstance();
 HtmlInputText htmlInputText = (HtmlInputText) uiComponent;

 if (!emailValidator.isValid((String) value))
 {
 FacesMessage facesMessage = new
 FacesMessage(htmlInputText.getLabel()
 + ": email format is not valid");
 throw new ValidatorException(facesMessage);
 }
 }
}

Chapter 6

[185]

As can be seen in the example, the only method we need to implement when
implementing the Validator interface is a method called validate(). This method
takes three parameters, an instance of javax.faces.context.FacesContext,
an instance of javax.faces.component.UIComponent, and an object. Typically,
application developers only need to be concerned with the last two. The second
parameter is the component whose data we are validating; the third parameter is
the actual value. In the example, we cast uiComponent to javax.faces.component.
html.HtmlInputText; this way we get access to its getLabel() method, which we
can use as part of the error message.

If the entered value is not a valid email address format, a new instance of javax.
faces.application.FacesMessage is created, passing the error message to be
displayed in the browser as its constructor parameter. We then throw a new
javax.faces.validator.ValidatorException. The error message is then
displayed in the browser; how it gets there is done behind the scenes by the JSF API.
The next screenshot illustrates the above validator in action.

Apache Commons Validator
The validator opposite uses Apache Commons Validator to do the actual
validation. This library includes many common validations like dates,
credit card numbers, ISBN numbers, and emails. When implementing
a custom validator, it is worth investigating if this library already has a
validator that we can use.

In order to use our validator in our page, we need to use the <f:validator> JSF
tag. The following JSP is a modified version of the customer data entry screen. This
version uses the <f:validator> tag to validate email addresses.

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<style type="text/css">
.leftAlign { text-align: left;}
.rightAlign { text-align: right;}
</style>
<title>Enter Customer Data</title>
</head>
<body>

JavaServer Faces

[186]

<f:view>
 <h:form>
 <h:messages></h:messages>
 <h:panelGrid columns="2" columnClasses="rightAlign,leftAlign">
 <h:outputText value="First Name:">
 </h:outputText>
 <h:inputText label="First Name" value="#{Customer.firstName}"
 required="true">
 <f:validateLength minimum="2" maximum="30"></f:validateLength>
 </h:inputText>
 <h:outputText value="Last Name:"></h:outputText>
 <h:inputText label="Last Name" value="#{Customer.lastName}"
 required="true">
 <f:validateLength minimum="2" maximum="30"></f:validateLength>
 </h:inputText>
 <h:outputText value="Email:">
 </h:outputText>
 <h:inputText label="Email" value="#{Customer.email}">
 <f:validator validatorId="emailValidator" />
 </h:inputText>
 <h:panelGroup></h:panelGroup>
 <h:commandButton action="save" value="Save"></h:commandButton>
 </h:panelGrid>
 </h:form>
</f:view>
</body>
</html>

In addition to creating the Validator class and using the <f:validator> tag, the
custom validator class must be declared in the application's faces-config.xml file.

<faces-config xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://
 java.sun.com/xml/ns/javaee/web-facesconfig_1_2.xsd"
 version="1.2">

 <managed-bean>
 <managed-bean-name>Customer</managed-bean-name>
 <managed-bean-class>
 net.ensode.glassfishbook.jsfcustomval.Customer
 </managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 </managed-bean>

 <navigation-rule>
 <from-view-id>/customer_data_entry.jsp</from-view-id>

Chapter 6

[187]

 <navigation-case>
 <from-outcome>save</from-outcome>
 <to-view-id>/confirmation.jsp</to-view-id>
 </navigation-case>
 </navigation-rule>

 <validator>
 <validator-id>emailValidator</validator-id>
 <validator-class>
 net.ensode.glassfishbook.jsfcustomval.EmailValidator
 </validator-class>
 </validator>
</faces-config>

The <validator-id> element contains an application-unique identifier for the
validator. The <validator-class> contains the fully qualified name for
the validator.

After performing all of these steps for our application, redeploying it, and pointing
the browser to the appropriate URL, we can see our validator in action.

Validator Methods
The second way we can implement custom validation is by adding validation
methods to one or more of the application's managed beans. The following Java class
illustrates the use of validator methods for JSF validation:

package net.ensode.glassfishbook.jsfcustomval;

import javax.faces.application.FacesMessage;
import javax.faces.component.UIComponent;
import javax.faces.component.html.HtmlInputText;
import javax.faces.context.FacesContext;

JavaServer Faces

[188]

import javax.faces.validator.ValidatorException;

import org.apache.commons.lang.StringUtils;

public class AlphaValidator
{
 public void validateAlpha(FacesContext facesContext,
 UIComponent uiComponent,
 Object value) throws ValidatorException
 {
 if (!StringUtils.isAlphaSpace((String) value))
 {
 HtmlInputText htmlInputText = (HtmlInputText)
 uiComponent;
 FacesMessage facesMessage = new
 FacesMessage(htmlInputText.getLabel()
 + ": only alphabetic characters are allowed.");
 throw new ValidatorException(facesMessage);
 }
 }
}

In this example, the class contains only the validator method. We can give our
validator method any name we want; however, its return value must be void, and
it must take the three parameters illustrated in the example, in that order. In other
words, except for the method name, the signature of a validator method must be
identical to the signature of the validate() method defined in the javax.faces.
validator.Validator interface.

As we can see, the body of the above validator method is nearly identical to the
body of our custom validator's validate() method. We check the value entered by
the user to make sure it contains only alphabetic characters and/or spaces, if it does
not, then we throw a ValidatorException passing an instance of FacesMessage
containing an appropriate error message String.

StringUtils
In the example, we used org.apache.commons.lang.StringUtils
to perform the actual validation logic. In addition to the method used in
the example, this class contains several methods for verifying that a String
is numeric or alphanumeric. This class, part of the Jakarta commons-lang
library, is very useful when writing custom validators.

Chapter 6

[189]

As every validator method must be in a managed bean, we need to declare the bean
containing the validator method(s) in the application's faces-config.xml file.

<faces-config xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://
 java.sun.com/xml/ns/javaee/web-facesconfig_1_2.xsd"
 version="1.2">

 <managed-bean>
 <managed-bean-name>Customer</managed-bean-name>
 <managed-bean-class>
 net.ensode.glassfishbook.jsfcustomval.Customer
 </managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 </managed-bean>

 <managed-bean>
 <managed-bean-name>AlphaValidator</managed-bean-name>
 <managed-bean-class>
 net.ensode.glassfishbook.jsfcustomval.AlphaValidator
 </managed-bean-class>
 <managed-bean-scope>application</managed-bean-scope>
 </managed-bean>

 <navigation-rule>
 <from-view-id>/customer_data_entry.jsp</from-view-id>
 <navigation-case>
 <from-outcome>save</from-outcome>
 <to-view-id>/confirmation.jsp</to-view-id>
 </navigation-case>
 </navigation-rule>

 <validator>
 <validator-id>emailValidator</validator-id>
 <validator-class>
 net.ensode.glassfishbook.jsfcustomval.EmailValidator
 </validator-class>
 </validator>
</faces-config>

The last thing we need to do to use our validator method is to bind it to our
component via the tag's validator attribute.

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

JavaServer Faces

[190]

"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<style type="text/css">
.leftAlign { text-align: left;}
.rightAlign { text-align: right;}
</style>
<title>Enter Customer Data</title>
</head>
<body>
<f:view>
 <h:form>
 <h:messages></h:messages>
 <h:panelGrid columns="2"
 columnClasses="rightAlign,leftAlign">
 <h:outputText value="First Name:">
 </h:outputText>
 <h:inputText label="First Name"
 value="#{Customer.firstName}"
 required="true"
 validator="#{AlphaValidator.validateAlpha}">
 <f:validateLength minimum="2"
 maximum="30"></f:validateLength>
 </h:inputText>
 <h:outputText value="Last Name:"></h:outputText>
 <h:inputText label="Last Name"
 value="#{Customer.lastName}"
 required="true"
 validator="#{AlphaValidator.validateAlpha}">
 <f:validateLength minimum="2"
 maximum="30"></f:validateLength>
 </h:inputText>
 <h:outputText value="Email:">
 </h:outputText>
 <h:inputText label="Email" value="#{Customer.email}">
 <f:validator validatorId="emailValidator" />
 </h:inputText>
 <h:panelGroup></h:panelGroup>
 <h:commandButton action="save"
 value="Save"></h:commandButton>
 </h:panelGrid>
 </h:form>
</f:view>
</body>
</html>

Chapter 6

[191]

Because neither the first name nor the last name fields should accept anything other
than alphabetic characters or spaces, we added our custom validator method to both
of these fields.

After following all of the previous steps, we can now see our validator method
in action.

Notice how for the First Name field, both our custom validator message and the
standard length validator were executed.

Implementing validator methods has the advantage of not having the overhead
of creating a whole class just for a single validator method (our example does just
that, but in many cases validator methods are added to an existing managed bean
containing other methods); however, the disadvantage is that each component can
only be validated by a single validator method. When using validator classes, several
<f:validator> tags can be nested inside the tag to be validated; therefore multiple
validations, both custom and standard, can be done on the field.

Customizing JSF's Default Messages
As we mentioned in the previous section, it is possible to customize the style (font,
color, text, etc.) of JSF's default validation messages.

JavaServer Faces

[192]

Customizing Message Styles
Customizing message styles can be done via Cascading Style Sheets (CSS). This
can be accomplished by using the <h:message> style or styleClass attributes.
The style attribute is used when we want to declare the CSS style inline. The
styleClass attribute is used when we want to use a predefined style in a CSS style
sheet or inside a <style> tag in our JSP.

The following JSP illustrates using the style attribute to alter the style of error
messages; it is a modified version of the JSP we saw in the previous section.

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<style type="text/css">
.leftAlign { text-align: left;}
.rightAlign { text-align: right;}
</style>
<title>Enter Customer Data</title>
</head>
<body>
<f:view>
 <h:form>
 <h:messages style="color: red;"></h:messages>
 <h:panelGrid columns="2" columnClasses="rightAlign,leftAlign">
 <h:outputText value="First Name:">
 </h:outputText>
 <h:inputText label="First Name" value="#{Customer.firstName}"
 required="true">
 <f:validateLength minimum="2" maximum="30"></f:validateLength>
 </h:inputText>
 <h:outputText value="Last Name:"></h:outputText>
 <h:inputText label="Last Name" value="#{Customer.lastName}"
 required="true">
 <f:validateLength minimum="2" maximum="30"></f:validateLength>
 </h:inputText>
 <h:outputText value="Email:">
 </h:outputText>
 <h:inputText label="Email" value="#{Customer.email}">

Chapter 6

[193]

 <f:validator validatorId="emailValidator" />
 </h:inputText>
 <h:panelGroup></h:panelGroup>
 <h:commandButton action="save" value="Save"></h:commandButton>
 </h:panelGrid>
 </h:form>
</f:view>
</body>
</html>

As we can see, the only difference between this page and the previous one is the use
of the style attribute of the <h:messages> tag. The following screenshot illustrates
how the validation error messages look after implementing this change:

In this particular case, we just set the color of the error message text to red, but we
are only limited by CSS capabilities in setting the style of the error messages.

Pretty much any standard JSF component has both a style and a
styleClass attribute that can be used to alter its style. The former is
used for predefined CSS styles, the latter is used for inline CSS.

Customizing Message Text
Some times it is desirable to override JSF's default validation errors. Default
validation errors are defined in a resource bundle called Messages.properties. This
file can be found inside the jsf-impl.jar file under [glassfish installation
directory]/glassfish/lib. It can be found under the javax.faces folder inside
the JAR file. The file contains several messages; we are only interested in validation
errors at this point.

JavaServer Faces

[194]

The default validation error messages are defined as follows:

javax.faces.validator.NOT_IN_RANGE=Validation Error: Specified
attribute is not between the expected values of {0} and {1}.
javax.faces.validator.DoubleRangeValidator.MAXIMUM={1}: Validation
Error: Value is greater than allowable maximum of "{0}"
javax.faces.validator.DoubleRangeValidator.MINIMUM={1}: Validation
Error: Value is less than allowable minimum of ''{0}''
javax.faces.validator.DoubleRangeValidator.NOT_IN_RANGE={2}:
Validation Error: Specified attribute is not between the expected
values of {0} and {1}.
javax.faces.validator.DoubleRangeValidator.TYPE={0}: Validation Error:
Value is not of the correct type
javax.faces.validator.LengthValidator.MAXIMUM={1}: Validation Error:
Value is greater than allowable maximum of ''{0}''
javax.faces.validator.LengthValidator.MINIMUM={1}: Validation Error:
Value is less than allowable minimum of ''{0}''
javax.faces.validator.LongRangeValidator.MAXIMUM={1}: Validation
Error: Value is greater than allowable maximum of ''{0}''
javax.faces.validator.LongRangeValidator.MINIMUM={1}: Validation
Error: Value is less than allowable minimum of ''{0}''
javax.faces.validator.LongRangeValidator.NOT_IN_RANGE={2}: Validation
Error: Specified attribute is not between the expected values of {0}
and {1}.
javax.faces.validator.LongRangeValidator.TYPE={0}: Validation Error:
Value is not of the correct type.

In order to override the default error messages, we need to create our own resource
bundle, using the same keys used in the default one, but altering the values to suit
our needs. Here is a very simple customized resource bundle for our application:

javax.faces.validator.LengthValidator.MINIMUM={1}: minimum allowed
length is ''{0}''

In this resource bundle, we override the error message for when the value entered
for a field validated by the <f:validateLength> tag is less than the allowed
minimum. In order to let our application know that we have a custom
resource bundle for message properties, we need to modify the application's
faces-config.xml file.

<faces-config xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://
 java.sun.com/xml/ns/javaee/web-facesconfig_1_2.xsd"
 version="1.2">
 <application>
 <message-bundle>net.ensode.Messages</message-bundle>
 </application>

 <managed-bean>

Chapter 6

[195]

 <managed-bean-name>Customer</managed-bean-name>
 <managed-bean-class>
 net.ensode.glassfishbook.jsfcustommess.Customer
 </managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 </managed-bean>

 <navigation-rule>
 <from-view-id>/customer_data_entry.jsp</from-view-id>
 <navigation-case>
 <from-outcome>save</from-outcome>
 <to-view-id>/confirmation.jsp</to-view-id>
 </navigation-case>
 </navigation-rule>

 <validator>
 <validator-id>emailValidator</validator-id>
 <validator-class>
 net.ensode.glassfishbook.jsfcustommess.EmailValidator
 </validator-class>
 </validator>
</faces-config>

As we can see, the only thing we need to do to the application's faces-config.xml
file is to add a <message-bundle> element indicating the name and location of the
resource bundle containing our custom messages.

After adding our custom message resource bundle and modifying the application's
faces-config.xml file, we can see our custom validation message in action.

JavaServer Faces

[196]

As we can see, if we haven't overridden a validation message, the default will still be
displayed. In our resource bundle, we only overrode the minimum length validation
error message, therefore our custom error message is shown for the First Name
text field. As we didn't override the error message for data entry going over the
maximum allowed length, the default error message is shown. The email validator
is the custom validator we developed previously in this chapter; as it is a custom
validator, its error message is not affected.

Integrating JSF and JPA
So far we have covered most of the features of JSF; however, our example application
does not actually save any data yet. In this section, we will cover how JavaServer
Faces and the Java Persistence API can be easily integrated to save user input to
a database.

As we have seen in this chapter, JSF managed beans are nothing but standard
JavaBeans. In Chapter 4, we saw that JPA uses standard JavaBeans for
object-relational mapping. As both JSF managed beans and JPA beans are
standard JavaBeans, there is nothing stopping us from using JPA beans as JSF
managed beans.

As we covered earlier, JSF tags can contain value-binding expressions, which are
used to automatically populate managed beans when the form is submitted. If we
use a JPA bean as a managed bean, the bean's properties are populated in this way.
We can then simply call the EntityManager.persist() method to save the data
into the database.

The first thing we need to do is use a JPA bean as the managed bean to be used for
value-binding expressions.

package net.ensode.glassfishbook.jsfjpa;

import java.io.Serializable;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.Table;

@Entity
@Table(name = "CUSTOMERS")
public class Customer implements Serializable
{
 @Id
 @Column(name = "CUSTOMER_ID")
 private Long customerId;

 @Column(name = "FIRST_NAME")

Chapter 6

[197]

 private String firstName;

 @Column(name = "LAST_NAME")
 private String lastName;

 private String email;

 public Long getCustomerId()
 {
 return customerId;
 }

 public void setCustomerId(Long customerId)
 {
 this.customerId = customerId;
 }

 public String getEmail()
 {
 return email;
 }

 public void setEmail(String email)
 {
 this.email = email;
 }

 public String getFirstName()
 {
 return firstName;
 }

 public void setFirstName(String firstName)
 {
 this.firstName = firstName;
 }

 public String getLastName()
 {
 return lastName;
 }

 public void setLastName(String lastName)
 {
 this.lastName = lastName;
 }
}

The above class is an exact copy of the Customer bean we saw in Chapter 4, the only
difference being the package it belongs to.

JavaServer Faces

[198]

We then need to add an additional managed bean to be used as a controller, because
it is always a good practice to follow the Model-View-Controller design pattern.

package net.ensode.glassfishbook.jsfjpa;

import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

import javax.annotation.Resource;
import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.PersistenceUnit;
import javax.sql.DataSource;
import javax.transaction.UserTransaction;

public class CustomerController
{
 @Resource(name = "jdbc/__CustomerDBPool")
 private DataSource dataSource;

 @PersistenceUnit(unitName = "customerPersistenceUnit")
 private EntityManagerFactory entityManagerFactory;

 @Resource
 private UserTransaction userTransaction;

 private Customer customer;

 public String saveCustomer()
 {
 String returnValue = "success";
 EntityManager entityManager =
 entityManagerFactory.createEntityManager();

 try
 {
 userTransaction.begin();

 Long customerId = getNewCustomerId();
 customer.setCustomerId(customerId);
 entityManager.persist(customer);

 userTransaction.commit();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 returnValue = "failure";
 }

 return returnValue;

Chapter 6

[199]

 }

 private Long getNewCustomerId()
 {
 Connection connection;
 Long newCustomerId = null;
 try
 {
 connection = dataSource.getConnection();
 PreparedStatement preparedStatement = connection
 .prepareStatement(
 "select max(customer_id)+1 as new_customer_id " +
 "from customers");

 ResultSet resultSet = preparedStatement.executeQuery();

 if (resultSet != null && resultSet.next())
 {
 newCustomerId = resultSet.getLong("new_customer_id");
 }

 connection.close();

 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }

 return newCustomerId;
 }

 public Customer getCustomer()
 {
 return customer;
 }

 public void setCustomer(Customer customer)
 {
 this.customer = customer;
 }
}

The saveCustomer() method in the above class will be called whenever a user clicks
on the "Save" button on the HTML form; a slight modification needs to be made to
the JSP containing the form, which we will cover shortly. This method simply
saves the data contained in the Customer bean to the database. Refer to Chapter 4
for details.

JavaServer Faces

[200]

Of special interest here are the setCustomer() and getCustomer() methods. These
methods are not meant to be invoked directly by an application developer instead
they should be invoked by GlassFish's JSF implementation with the appropriate
instance of the Customer bean. We need to declare the customer property of this
controller as a managed property. This can be accomplished by modifying the
application's faces-config.xml file.

<faces-config xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://
 java.sun.com/xml/ns/javaee/web-facesconfig_1_2.xsd"
 version="1.2">

 <managed-bean>
 <managed-bean-name>CustomerController</managed-bean-name>
 <managed-bean-class>
 net.ensode.glassfishbook.jsfjpa.CustomerController
 </managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 <managed-property>
 <property-name>customer</property-name>
 <property-class>
 net.ensode.glassfishbook.jsfjpa.Customer
 </property-class>
 <value>#{Customer}</value>
 </managed-property>
 </managed-bean>

 <managed-bean>
 <managed-bean-name>Customer</managed-bean-name>
 <managed-bean-class>
 net.ensode.glassfishbook.jsfjpa.Customer
 </managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 </managed-bean>

 <navigation-rule>
 <from-view-id>/save_customer.jsp</from-view-id>
 <navigation-case>
 <from-outcome>success</from-outcome>
 <to-view-id>/customer_saved.jsp</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>failure</from-outcome>
 <to-view-id>/error_saving_customer.jsp</to-view-id>
 </navigation-case>
 </navigation-rule>
</faces-config>

Chapter 6

[201]

As can be seen in the example opposite, the <managed-property> tag contains a
nested <property-name> tag that contains the name of the property to manage.
Its value must match the bean's property name as declared in its Java code. The
<property-class> element contains the fully qualified class name of the property,
and the <property-value> element contains a value-binding expression matching
the <managed-bean-name> element for the bean corresponding to the property.

After we set up our faces-config.xml file in this way, the setCustomer() method
of our controller class will automatically be called with the appropriate instance of
the Customer bean.

Finally, in order for the saveCustomer() method to be called whenever the
user submits the form and all fields validate correctly, we need to make a slight
modification to the customer data-entry JSP.

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Save Customer</title>
</head>
<body>
<f:view>
 <h:form>
 <h:messages></h:messages>
 <table cellpadding="0" cellspacing="0" border="0">
 <tr>
 <td align="right">First Name:</td>
 <td align="left">
 <h:inputText label="First Name"
 value="#{Customer.firstName}" required="true">
 <f:validateLength minimum="2" maximum="30">
 </f:validateLength>
 </h:inputText></td>
 </tr>
 <tr>
 <td align="right">Last Name:</td>
 <td align="left"><h:inputText label="Last Name"
 value="#{Customer.lastName}" required="true">
 <f:validateLength minimum="2" maximum="30">

JavaServer Faces

[202]

 </f:validateLength>
 </h:inputText></td>
 </tr>
 <tr>
 <td align="right">Email:</td>
 <td align="left"><h:inputText label="Email"
 value="#{Customer.email}">
 <f:validateLength minimum="2" maximum="30">
 </f:validateLength>
 </h:inputText></td>
 </tr>
 <tr>
 <td></td>
 <td align="left">
 <h:commandButton
 action="#{CustomerController.saveCustomer}"
 value="Save"></h:commandButton>
 </td>
 </tr>
 </table>
 </h:form>
</f:view>
</body>
</html>

The only significant difference between this version of the JSP and previous versions
is that the action attribute of the <h:commandButton> tag was changed to point to
the saveCustomer() method of the CustomerController managed bean. As can
be seen in the source code for this bean (shown earlier in this section), this method
returns the String "success" if the data was saved successfully, or "failure" if there
was any problem saving the data. These two values are used in the application's
faces-config.xml file to decide what page to navigate to after this method ends: a
confirmation page if everything went well, or an error page if there was a problem.
These navigation rules can be seen inside the <navigation-rule> element of the
faces-config.xml file, which was also shown earlier in this section.

There are a few more changes made to this version of the data entry JSP, which are
unrelated to the task at hand. First, for simplicity, we removed some of the features
we covered earlier in the chapter (custom validators, error message styling, etc.).
Additionally, and slightly more interestingly, we replaced the <h:panelGrid>
component with a standard HTML table. Most JSP developers are very familiar with
HTML, therefore using standard HTML components whenever possible leverages
this knowledge and potentially makes the page markup more readable. In previous
versions of the JSF specification, it wasn't recommended to mix standard HTML and

Chapter 6

[203]

JSF tags inside the <f:view> tag, because doing so sometimes resulted in unexpected
results. This restriction has been lifted in the latest version of the JSF specification
(JSF 1.2), which, of course, is part of the Java EE 5 specification and is supported by
GlassFish.

JSF Standard Components include several standard components; we have only
covered a subset of these components so far. The following sections cover all
available JSF components.

JSF Core Components
JSF core components are components that are not tied to HTML rendering or any
other rendering mechanism. They provide functionality like type conversion and
validation, among others. In this section, we will cover all core JSF components.

<f:actionListener>
This tag executes the processAction()method of the action listener defined by the
tag's type attribute. The value of the type attribute must be the fully qualified name
of a class implementing the javax.faces.event.ActionListener interface. This
tag is typically a child tag of <h:commandButton> or <h:commandLink>; when the
user clicks on the parent component, the processAction() method of the declared
ActionListener implementation is automatically executed. The following markup
segment illustrates how this tag is typically used:

<h:commandButton action="save" value="Save">
 <f:actionListener type="net.ensode.CustomActionListener"/>
</h:commandButton>

<f:attribute>
This tag sets an attribute on the parent component, with a key defined by the tag's
name attribute and a value defined by the tag's value attribute. All component
attributes can later be programmatically retrieved as a Map by invoking the
getAttributes() method of the appropriate instance of javax.faces.component.
UIComponent. This tag is frequently used in conjunction with the
<f:actionListener> class to pass parameters to the action listener.

The following markup segment illustrates typical use of this tag:

<h:commandButton action="save" value="Save">
 <f:actionListener type="net.ensode.CustomActionListener"/>
 <f:attribute name="someAttribute" value="someValue"/>
</h:commandButton>

JavaServer Faces

[204]

The processAction() method of our CustomActionListener class would look
something like this:

public void processAction(ActionEvent actionEvent)
{
 String attribute = (String)
 actionEevent.getComponent().getAttributes().
 get("attrname1");
 //processing continues...
}

<f:convertDateTime>
This tag converts the value of the parent component into an instance of java.util.
Date. This tag allows a correctly formatted user-entered string to be assigned to a
date field in a managed bean. The following segment of markup illustrates typical
usage for this tag:

<h:inputText value="#{Customer.birthDate}">
 <f:convertDateTime dateStyle="short"/>
</h:inputText>

<f:convertNumber>
This tag converts the value of the parent component into an instance of java.lang.
Number. This tag allows a correctly formatted user-entered string to be assigned
to a numeric field in a managed bean. As java.lang.Number is the parent class of
java.lang.Integer, java.lang.Long, java.lang.Float, and java.lang.Double
(among other numeric types), this tag can be used to convert pretty much any type of
numeric data entry field into the appropriate type.

The following markup segment illustrates typical usage for this tag:

<h:inputText value="#{Customer.age}">
 <f:convertNumber/>
</h:inputText>

<f:converter>
This tag registers the custom converter specified by the tag's converterId attribute
with the parent tag. The specified converter must be a class implementing the
javax.faces.convert.Converter interface and it must be registered in the
application's faces-config.xml file via the <converter> tag.

Chapter 6

[205]

Suppose we have created a custom class named TelephoneNumber to store telephone
numbers, and that a managed bean named Customer has a field called telephone of
type TelephoneNumber, we could create a custom validator to convert a user-entered
telephone number into an instance of the TelephoneNumber class.

<h:inputText value="#{Customer.telephone}">
 <f:converter converterId="TelephoneConverter"/>
</h:inputText>

As we explained, our custom converter would have to be registered in the
application's faces-config.xml file.

<converter>
 <converter-id>TelephoneConverter</converter-id>
 <converter-class>
 net.ensode.TelephoneConverter
 </converter-class>
 </converter>

The TelephoneConverter class would have to implement
javax.faces.convert.Converter.

<f:facet>
This tag registers a facet on the parent component. A facet is a special child
component that can be accessed via the UIComponent.getFacet() method. This
method can be overridden for custom components; it allows components inside a
facet to be treated differently. For example, the standard <h:dataTable> tag can
have a facet named "header" that is used to render all components in the <f:facet>
tag as the header of the rendered HTML table.

The following markup segment illustrates typical usage of this tag:

<h:dataTable value="{Order.items}" var="item">
 <h:column>
 <f:facet name="header">
 <h:outputText value="Item Number" />
 </f:facet>
 <h:outputText value="#{item.itemNumber}" />
 </h:column>
 <h:column>
 <f:facet name="header">
 <h:outputText value="Item Description" />
 </f:facet>
 <h:outputText value="#{item.itemShortDesc}" />
 </h:column>
</h:dataTable>

JavaServer Faces

[206]

<f:loadBundle>
This tag loads a resource bundle into the request scope. The resource bundle name is
specified by the tag's basename attribute. The variable to use to access the resource
bundle properties is defined by the tag's var attribute.

The following markup segment illustrates typical usage of this tag:

<f:view
 locale="#{facesContext.externalContext.request.locale}">
 <f:loadBundle basename="net.ensode.Messages" var="mess"/>
 <h:outputText value="#{mess.greeting}"/>
</f:view>

<f:param>
When this tag is a child of <h:commandLInk>, it generates a request parameter
defined by its name and value attributes. When this tag is a child of <h:
outputFormat>, it substitutes a parameter in the string defined by the value
attribute of <h:outpufFormat>.

The following markup segment illustrates typical usage of this tag:

<h:outputFormat value="Hello, {0}">
 <f:param value="#{Customer.firstName}"/>
</h:outputFormat>

<f:phaseListener>
This tag registers a phase listener to the current page. The phase listener must be an
instance of a class implementing javax.faces.event.PhaseListener; this class is
defined by the tag's type attribute.

The following markup segment illustrates typical usage of this tag:

<f:view>
 <f:phaseListener type="net.ensode.CustomPhaseListener"/>
</f:view>

<f:selectItem>
This tag adds a selectable item belonging to the parent component. The way this
component is rendered depends on the parent component. It can be used as
a child component of <h:selectManyCheckBox>, <h:selectManuListBox>,
<h:selectManyMenu>, <h:selectOneListbox>, <h:selectOneMenu>,
<h:selectOneRadio>.

Chapter 6

[207]

The following markup segment illustrates typical usage of this tag.

<h:selectManyCheckBox value="#{Order.items}">
 <f:selectItem itemValue="#{Item1}"
 itemLabel="Wireless keyboard"/>
 <f:selectItem itemValue="#{Item1}"
 itemLabel="Wireless mouse"/>
</h:selectManyCheckBox>

<f:selectItems>
This tag adds a series to of selectable items belonging to the parent tag. This tag's
value attribute must be a deferred-value expression resolving to an array or a List of
javax.faces.model.SelectItem objects.

The following markup segment illustrates typical usage of this tag.

<h:selectManyCheckBox value="#{Order.items}">
 <f:selectItems value="#{ValueContainer.allItems} "/>
</h:selectManyCheckBox>

<f:setPropertyActionListener>
This tag can be a child tag of <h:commandLink> or <h:commandButton>. When the
button or linked is clicked, this tag sets an attribute in a managed bean defined by
the tag's target attribute with the value of the tag's value attribute.

The following markup segment illustrates typical usage of this tag.

<h:commandButton value="Save"
 action="#{Controller.save}">
 <f:setPropertyActionListener
 target="#{Order.lastUpdUserId}" value="#{User.userId}"/>
</h:commandButton>

<f:subview>
Any JSPs included via a <jsp:include> tag or JSTL's <c:import> tag must be inside
an <f:subview> tag.

The following markup segment illustrates typical usage of this tag.

<f:view>
 <table>
 <tr>
 <td width="30%">

JavaServer Faces

[208]

 <f:subview>
 <jsp:include page="menu.jsp">
 </f:subview>
 </td>
 <td>
 Additional content here.
 </td>
 </tr>
 </table>
</f:view>

<f:validateDoubleRange>
This tag validates that the value for the parent component is an instance of java.
lang.Double that is between the values defined by the tag's minimum and maximum
attributes.

The following markup segment illustrates typical usage of this tag.

<h:inputText value="#{Item.price}">
 <f:validateDoubleRange minimum="1.0" maximum="100.0"/>
</h:inputText>

<f:validateLength>
This tag validates that the value for the parent component is a string whose length is
between the values defined by the tag's minimum and maximum attributes, inclusive.

The following markup segment illustrates typical usage of this tag.

<h:inputText label="First Name"
 value="#{Customer.firstName}"
 required="true">
 <f:validateLength minimum="2"
 maximum="30"></f:validateLength>
</h:inputText>

<f:validateLongRange>
This tag validates that the value for the parent component is an instance of java.lang.
Long that is between the values defined by the tag's minimum and maximum attributes.

The following markup segment illustrates typical usage of this tag.

<h:inputText value="#{OrderItem.quantity}">
 <f:validateDoubleRange minimum="1" maximum="100"/>
</h:inputText>

Chapter 6

[209]

<f:validator>
This tag validates the value of the parent component against a custom validator
implementing the javax.faces.validator.Validator interface. The custom
validator must be declared in the application's faces-config.xml file.

The following markup segment illustrates typical usage of this tag.

<h:inputText label="Email" value="#{Customer.email}">
 <f:validator validatorId="emailValidator" />
</h:inputText>

<f:valueChangeListener>
This tag registers an instance of a class implementing the javax.faces.
event.ValueChangeListener interface with the parent component. The
ValueChangeListener implementation will implement a processValueChange()
method that can perform an action if the value of the parent component changes.

The following markup segment illustrates typical usage of this tag:

<h:inputText value="#{OrderItem.quantity}">
 <f:valueChangeListener
 type="net.ensode.CustomValueChangeListener"/>
</h:inputText>

<f:verbatim>
The content of this tag is passed "as-is" to the rendered page. Before JSF 1.2, it was
not recommended to have HTML tags inside the JSF <f:view> tag, as they would
sometimes not render properly. A common workaround to this limitation was to
put standard HTML tags inside <f:verbatim> tags. As of JSF 1.2, this tag became
somewhat redundant because it is now possible to safely place standard HTML tags
inside the <f:view> tag.

The following markup segment illustrates typical usage of this tag:

<f:view>
 <f:verbatim><p></f:verbatim>
 This text will be rendered inside an HTML <p> tag.
 <f:verbatim></p></f:verbatim>
</f:view>

<f:view>
This tag is the parent tag for all JSF tags, both standard and custom.

JavaServer Faces

[210]

The following markup segment illustrates typical usage of this tag:

<f:view>
 <h:outputText
 escape="true"
 value="All JSF components must be inside <f:view>"/>
</f:view>

JSF HTML Components
In previous examples, we only covered a subset of the standard JSF HTML
components. In this section, we will list all standard JSF HTML components.

<h:column>
This tag is typically nested inside the <h:dataTable> tag. Any components
inside this tag will be rendered as a single column inside the table rendered by
<h:dataTable>.

The following markup segment illustrates typical usage of this tag.

<h:dataTable value="{Order.items}" var="item">
 <h:column>
 <f:facet name="header">
 <h:outputText value="Item Number" />
 </f:facet>
 <h:outputText value="#{item.itemNumber}" />
 </h:column>
 <h:column>
 <f:facet name="header">
 <h:outputText value="Item Description" />
 </f:facet>
 <h:outputText value="#{item.itemShortDesc}" />
 </h:column>
</h:dataTable>

<h:commandButton>
This tag renders an HTML submit button on the rendered page.

The following markup segment illustrates typical usage of this tag:

 <h:form>
 <h:inputText label="First Name"
 value="#{Customer.firstName}"/>
 <h:commandButton action="save"
 value="Save"></h:commandButton>
 </h:form>

Chapter 6

[211]

<h:commandLink>
This tag renders a link that will submit the form defined by this tag's parent
<h:form> tag.

The following markup segment illustrates typical usage of this tag:

 <h:form>
 <h:inputText label="First Name"
 value="#{Customer.firstName}"/>
 <h:commandLink action="save"
 value="Save"></h:commandLink>
 </h:form>

<h:dataTable>
This tag builds a table dynamically based on the values of a Collection. The collection
holding the values must be defined by the tag's value attribute.

The following markup segment illustrates typical usage of this tag:

<h:dataTable value="{Order.items}" var="item">
 <h:column>
 <f:facet name="header">
 <h:outputText value="Item Number" />
 </f:facet>
 <h:outputText value="#{item.itemNumber}" />
 </h:column>
 <h:column>
 <f:facet name="header">
 <h:outputText value="Item Description" />
 </f:facet>
 <h:outputText value="#{item.itemShortDesc}" />
 </h:column>
</h:dataTable>

<h:form>
This tag renders an HTML form on the generated page.

The following markup segment illustrates typical usage of this tag:

<h:form>
 <h:inputText label="First Name"
 value="#{Customer.firstName}"/>
 <h:commandLink action="save"
 value="Save"></h:commandLink>
</h:form>

JavaServer Faces

[212]

<h:graphicImage>
This tag renders an HTML img tag.

The following markup segment illustrates typical usage of this tag:

<h:graphicImage
 url="/images/logo.png">
</h:graphicImage>

<h:inputHidden>
This tag renders an HTML hidden field.

The following markup segment illustrates typical usage of this tag:

<h:inputHidden
 value="#{Customer.id}" />

<h:inputSecret>
This tag renders an HTML input field of type password.

The following markup segment illustrates typical usage of this tag:

<h:inputSecret redisplay="false"
 value="#{User.password}" />

<h:inputText>
This tag renders an HTML input field of type text.

The following markup segment illustrates typical usage of this tag:

<h:inputText label="First Name"
 value="#{Customer.firstName}"/>

<h:inputTextarea>
This tag renders an HTML textarea field.

The following markup segment illustrates typical usage of this tag:

<h:inputTextarea label="Comments"
 value="#{Order.comments}"/>

Chapter 6

[213]

<h:message>
This tag renders messages for a single component. The component for which to
render messages must use its id attribute to set an identifier for itself. This identifier
then needs to be used as this element's for attribute.

The following markup segment illustrates typical usage of this tag:

 <table>
 <tr>
 <td align="right">
 <h:outputLabel

 value="Login Name:"
 for="loginField"/></td>
 <td><h:inputText id="loginField" value="#{User.login}"
 required="true"/></td>
 <td><h:message for="loginField"/></td>
 </tr>
</table>

<h:messages>
This tag outputs messages for all components or global messages. If the tag's
globalOnly attribute is set to true, then only global messages (messages not specific
to any component) will be displayed.

The following markup segment illustrates typical usage of this tag:

<f:view>
 <h:messages/>
 <h:form>
 <h:inputText label="First Name"
 value="#{Customer.firstName}"/>
 <h:commandButton action="save"
 value="Save"/>
 </h:form>
<f:view>

<h:outputFormat>
This tag renders parameterized text. Parameters in this tag's value attribute are
defined in a manner similar to the way they are defined in a resource bundle, that is,
by placing integers between curly braces in the parameter locations. Parameters are
substituted with values defined in any child <f:param> elements.

JavaServer Faces

[214]

The following markup segment illustrates typical usage of this tag:

<h:outputFormat value="Hello, {0}">
 <f:param value="#{Customer.firstName}"/>
</h:outputFormat>

<h:outputLabel>
This tag renders an HTML label field.

The following markup segment illustrates typical usage of this tag:

<table>
 <tr>
 <td align="right">
 <h:outputLabel
 value="Login Name:"
 for="loginField"/></td>
 <td><h:inputText id="loginField" value="#{User.login}"
 required="true"/></td>
 </tr>
</table>

<h:outputLink>
This tag renders an HTML link as an anchor (a) element with an href attribute.

The following markup segment illustrates typical usage of this tag:

<h:outputLink
 value="http://ensode.net">
 <h:outputText value="Ensode"/>
</h:outputLink>

<h:outputText>
If the dir, lang, style, or styleClass attributes are defined, this tag renders an
HTML span element containing the tag's value attribute. Otherwise, the value
defined by the tag's value attribute is rendered, escaping any XML/HTML characters
so that they are rendered properly. If the tag's escape attribute is set to false, then
XML/HTML characters are not escaped.

The following markup segment illustrates typical usage of this tag:

<h:outputText value="#{Customer.firstName}"/>

Chapter 6

[215]

<h:panelGrid>
This tag renders a static HTML table. The number of columns in the table is specified
in the tag's columns attribute. Child components are then added to a subsequent row
once the number of elements defined in the columns attribute have been added for
the current row.

The following markup segment illustrates typical usage of this tag:

<h:panelGrid columns="2"
 columnClasses="rightAlign,leftAlign">
 <h:outputText value="First Name:">
 </h:outputText>
 <h:inputText label="First Name"
 value="#{Customer.firstName}"
 required="true">
 <f:validateLength minimum="2"
 maximum="30"></f:validateLength>
 </h:inputText>
 <h:outputText value="Last Name:"></h:outputText>
 <h:inputText label="Last Name"
 value="#{Customer.lastName}"
 required="true">
 <f:validateLength minimum="2"
 maximum="30"></f:validateLength>
 </h:inputText>
 <h:outputText value="Email:">
 </h:outputText>
 <h:inputText label="Email" value="#{Customer.email}">
 <f:validateLength minimum="3"
 maximum="30"></f:validateLength>
 </h:inputText>
 <h:panelGroup></h:panelGroup>
 <h:commandButton action="save"
 value="Save"></h:commandButton>
 </h:panelGrid>

<h:panelGroup>
This tag is used to group its child components together in a single cell of a parent <h:
panelGrid> or <h:dataTable> tag. Can also be used to create an "empty" cell in a
parent <h:panelGrid> tag.

JavaServer Faces

[216]

The following markup segment illustrates typical usage of this tag:

<h:panelGrid columns="2"
 columnClasses="rightAlign,leftAlign">
 <h:outputText value="First Name:">
 </h:outputText>
 <h:inputText label="First Name"
 value="#{Customer.firstName}"
 required="true">
 <f:validateLength minimum="2"
 maximum="30"></f:validateLength>
 </h:inputText>
 <h:outputText value="Last Name:"></h:outputText>
 <h:inputText label="Last Name"
 value="#{Customer.lastName}"
 required="true">
 <f:validateLength minimum="2"
 maximum="30"></f:validateLength>
 </h:inputText>
 <h:outputText value="Email:">
 </h:outputText>
 <h:inputText label="Email" value="#{Customer.email}">
 <f:validateLength minimum="3"
 maximum="30"></f:validateLength>
 </h:inputText>
 <h:panelGroup></h:panelGroup>
 <h:commandButton action="save"
 value="Save"></h:commandButton>
 </h:panelGrid>

<h:selectBooleanCheckbox>
This tag renders a single HTML input field of type checkbox. The value attribute
for this tag is usually set to a value-binding expression mapping to a Boolean
property in a managed bean.

The following markup segment illustrates typical usage of this tag:

<h:selectBooleanCheckbox
 value="#{Customer.newsletterOk}" />
<h:outputText
 value="Would you like to receive our newsletter?"/>

Chapter 6

[217]

<h:selectManyCheckbox>
This tag renders a series of related checkboxes. Values for the user to select are
defined in any child <f:selectItem> or <f:selectItems> tags.

The following markup segment illustrates typical usage of this tag:

<h:selectManyCheckBox value="#{Order.items}">
 <f:selectItems value="#{ValueContainer.allItems} "/>
</h:selectManyCheckBox>

<h:selectManyListbox>
This tag renders an HTML select field of variable size that allows multiple
selections. Values for the user to select are defined in any child <f:selectItem> or
<f:selectItems> tags. The number of elements displayed at the same time is set by
the tag's size attribute.

The following markup segment illustrates typical usage of this tag:

<h:selectManyListBox value="#{Order.items}">
 <f:selectItems value="#{ValueContainer.allItems} "/>
</h:selectManyListBox>

<h:selectManyMenu>
This tag renders an HTML select field that allows multiple selections. Values for
the user to select are defined in any child <f:selectItem> or <f:selectItems>
tags. This tag is identical to <h:selectManyListbox>, except that it always displays
one element at a time, therefore it has no size attribute.

The following markup segment illustrates typical usage of this tag:

<h:selectManyMenu value="#{Order.items}">
 <f:selectItems value="#{ValueContainer.allItems} "/>
</h:selectManyMenu>

<h:selectOneListbox>
This tag renders an HTML select field of variable size that does not allow multiple
selections. Values for the user to select are defined in any child <f:selectItem> or
<f:selectItems> tags. The number of elements displayed at the same time is set
by the tag's size attribute, which is optional. If the size attribute is not set, then all
elements are displayed at the same time.

JavaServer Faces

[218]

The following markup segment illustrates typical usage of this tag:

<h:selectOneListBox value="#{Order.selectedItem}">
 <f:selectItems value="#{ValueContainer.allItems} "/>
</h:selectOneListBox>

<h:selectOneMenu>
This tag renders an HTML "dropdown", which is to say it renders an HTML select
field that does not allow multiple selections. Only one element is displayed at a time.
Values for the user to select are defined in any child <f:selectItem> or
<f:selectItems> tags.

The following markup segment illustrates typical usage of this tag:

<h:selectOneMenu value="#{Order.selectedItem}">
 <f:selectItems value="#{ValueContainer.allItems} "/>
</h:selectOneMenu>

<h:selectOneRadio>
This tag renders a series of related radio buttons. Values for the user to select are
defined in any child <f:selectItem> or <f:selectItems> tags.

The following markup segment illustrates typical usage of this tag:

<h:selectOneRadio value="#{Order.selectedItem}">
 <f:selectItems value="#{ValueContainer.allItems} "/>
</h:selectOneRadio>

Additional JSF Tag Libraries
In addition to the standard JSF tag libraries, there are a number of third-party JSF tag
libraries available. The following table lists some of the most popular ones:

Tag Library Distributor License URL
MyFaces
Tomahawk

Apache Apache 2.0 http://myfaces.apache.org/tomahawk/

ICEfaces ICEsoft MPL 1.1 http://www.icefaces.org

RichFaces Red Hat/
JBoss

LGPL http://labs.jboss.com/portal/
jbossrichfaces/

Woodstock Sun CDDL https://woodstock.dev.java.net

Chapter 6

[219]

Summary
In this chapter, we covered how to develop web-based applications using JavaServer
Faces, the standard component framework for the Java EE 5 platform. We covered
how to write a simple application by creating JSPs containing JSF tags and managed
beans. We also covered how to validate user input by using JSF's standard validators
and by creating our own custom validators or by writing validator methods.
Additionally, we covered how to customize standard JSF error messages, both the
message text and the message style (font, color, etc.). Finally, we covered how to
write applications by integrating JSF and the Java Persistence API (JPA).

Java Messaging Service
The Java Messaging Service API (JMS) provides a mechanism for Java EE
applications to send messages to each other. JMS applications do not communicate
directly; instead message producers send messages to a destination, and message
consumers receive the message from the destination.

The message destination is a message queue when the Point-To-Point (PTP)
Messaging Domain is used, or a message topic when the Publish/Subscribe
(pub/sub) messaging domain is used.

In this chapter, we will cover the following topics:

Setting up GlassFish for JMS
Working with message queues
Working with message topics

Setting Up GlassFish for JMS
Before we can start writing code to take advantage of the JMS API, we need
to configure some GlassFish resources. Specifically, we need to set up a JMS
Connection Factory, a message queue, and a message topic.

Setting Up a JMS Connection Factory
The easiest way to set up a JMS connection factory is via GlassFish's web console.
Recall from Chapter 1 that the web console can be accessed by starting our domain
by entering the following command in the command line:

 asadmin start-domain domain1

•

•

•

Java Messaging Service

[222]

then pointing the browser to http://localhost:4848 and logging in.

Chapter 7

[223]

A connection factory can be added by expanding the Resources node in the tree at
the left-hand side of the web console, expanding the JMS Resources node, clicking
on the Connection Factories node, and then clicking on the New... button in the
main area of the web console.

Java Messaging Service

[224]

After clicking on the New... button and entering the appropriate information for our
connection factory, we should then see our newly created message queue listed in
the main area of the GlassFish web console.

For our purposes, we can take most of the defaults; the only thing we need to do is
enter a JNDI name and pick a resource type for our connection factory.

Chapter 7

[225]

It is always a good idea to use a JNDI name starting with "jms/" when
picking a JNDI name for JMS resources. This way, JMS resources can be
easily identified when browsing a JNDI tree.

In the text field labeled JNDI Name, enter jms/GlassFishBookConnectionFactory.
Our code examples later in this chapter will use this JNDI name to obtain a reference
to this connection factory.

The Resource Type dropdown has three options:

javax.jms.TopicConnectionFactory: used to create a connection factory that
creates JMS topics for JMS clients using the pub/sub messaging domain
javax.jms.QueueConnectionFactory: used to create a connection factory that
creates JMS queues for JMS clients using the PTP messaging domain
javax.jms.ConnectionFactory: used to create a connection factory that creates
either JMS topics or JMS queues

For our example, we will select javax.jms.ConnectionFactory; this way we can use
the same connection factory for all of our examples, those using the PTP messaging
domain and those using the pub/sub messaging domain.

After entering the JNDI name for our connection factory, selecting a connection
factory type, and optionally, entering a description for our connection factory, we
must click on the OK button for the changes to take effect.

We should then see our newly created connection factory listed in the main area of
the GlassFish web console.

•

•

•

Java Messaging Service

[226]

Setting Up a JMS Message Queue
A JMS message queue can be added by expanding the Resources node in the tree
at the left-hand side of the web console, expanding the JMS Resources node, and
clicking on the Destination Resources node, then clicking on the New... button in
the main area of the web console.

In our examples, the JNDI name of the message queue is jms/GlassFishBookQueue.
The resource type for message queues must be javax.jms.Queue. Additionally,
a value for the Name property must be entered. In the above example, we use
GlassFishBookQueue as the value for this property.

After clicking on the New... button and entering the appropriate information for our
message queue, we should now see the newly created queue.

Chapter 7

[227]

Setting Up a JMS Message Topic
Setting up a JMS message topic in GlassFish is very similar to setting up a
message queue.

In the GlassFish web console, expand the Resources node in the tree at the left-hand
side, then expand the JMS Resouces node, click on the Destination node, then click
on the New... button in the main area of the web console.

Our examples will use a JNDI Name of jms/GlassFishBookTopic. As this is
a message topic, Resource Type must be javax.jms.Topic. The Description
field is optional. The Name property is required; for our example, we will use
GlassFishBookTopic as the value for the Name property.

After clicking the OK button, we can see our newly created message topic.

Java Messaging Service

[228]

Now that we have set up a connection factory, a message queue, and a message
topic, we are ready to start writing code using the JMS API.

Message Queues
As we mentioned earlier, message queues are used when our JMS code uses the
Point-To-Point (PTP) messaging domain. For the PTP messaging domain, there is
usually one message producer and one message consumer. The message producer
and the message consumer don't need to be running concurrently in order to
communicate. The messages placed in the message queue by the message producer
will stay in the message queue until the message consumer executes and requests the
messages from the queue.

Sending Messages to a Message Queue
The following example illustrates how to add messages to a message queue:

package net.ensode.glassfishbook;

import javax.annotation.Resource;
import javax.jms.Connection;
import javax.jms.ConnectionFactory;
import javax.jms.JMSException;
import javax.jms.MessageProducer;
import javax.jms.Queue;
import javax.jms.Session;
import javax.jms.TextMessage;

public class MessageSender
{

 @Resource(mappedName = "jms/GlassFishBookConnectionFactory")
 private static ConnectionFactory connectionFactory;
 @Resource(mappedName = "jms/GlassFishBookQueue")
 private static Queue queue;

 public void produceMessages()
 {
 MessageProducer messageProducer;
 TextMessage textMessage;
 try
 {
 Connection connection = connectionFactory.createConnection();
 Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);
 messageProducer = session.createProducer(queue);

Chapter 7

[229]

 textMessage = session.createTextMessage();
 textMessage.setText(
 "Testing, 1, 2, 3. Can you hear me?");
 System.out.println("Sending the following message: "
 + textMessage.getText());
 messageProducer.send(textMessage);

 textMessage.setText("Do you copy?");
 System.out.println("Sending the following message: "
 + textMessage.getText());
 messageProducer.send(textMessage);

 textMessage.setText("Good bye!");
 System.out.println("Sending the following message: "
 + textMessage.getText());
 messageProducer.send(textMessage);

 messageProducer.close();
 session.close();
 connection.close();
 }
 catch (JMSException e)
 {
 e.printStackTrace();
 }

 }

 public static void main(String[] args)
 {
 new MessageSender().produceMessages();
 }
}

Before delving into the details of the above code, alert readers might have noticed
that the above class is a standalone Java application, because it contains a main
method. As this class is standalone, it executes outside the application server,
yet we can see that some resources are injected into it, specifically the connection
factory and queue. The reason we can inject resources into this code even though
it runs outside the application server is because GlassFish includes a utility called
appclient. This utility allows us to "wrap" an executable JAR file and allow it to
have access to the application server resources. To execute the above code, assuming
it is packaged in an executable JAR file called jmsptpproducer.jar, we would type
the following in the command line:

appclient -client jmsptpproducer.jar

Java Messaging Service

[230]

We would then see the following output on the console:

Sending the following message: Testing, 1, 2, 3. Can you hear me?

Sending the following message: Do you copy?

Sending the following message: Good bye!

The appclient executable can be found under [GlassFish installation
directory]/glassfish/bin; the example assumes this directory is in your PATH
variable; if it isn't the complete path to the appclient executable must be typed in
the command line.

With that out of the way, we can now talk about the code.

The produceMessages() method performs all the necessary steps to send messages
to a message queue.

The first thing this method does is obtain a JMS connection by invoking
the createConnection() method on the injected instance of javax.jms.
ConnectionFactory. Notice that the mappedName attribute of the @Resource
annotation decorating the connection factory object matches the JNDI name of the
connection factory that we set up in the GlassFish web console. Behind the scenes, a
JNDI lookup is made using this name to obtain the connection factory object.

After obtaining a connection, the next step is to obtain a JMS session from the said
connection. This can be accomplished by calling the createSession() method on
the Connection object. As can be seen in the code, the createSession() method
takes two parameters.

The first parameter of the createSession() method is a Boolean indicating if the
session is transacted. If this value is true, several messages can be sent as part of a
transaction by invoking the commit() method in the session object; similarly, they
can be rolled back by invoking its rollback() method.

The second parameter of the createSession() method indicates how messages
are acknowledged by the message receiver. Valid values for these parameters are
defined as constants in the javax.jms.Session interface:

Session.AUTO_ACKNOWLEDGE: indicates that the session will automatically
acknowledge receipt of a message.
Session.CLIENT_ACKNOWLEDGE: indicates that the message receiver must
explicitly call the acknowledge() method on the message.
Session.DUPS_OK_ACKNOWLEDGE: indicates that the session will lazily
acknowledge the receipt of messages. Using this value might result in some
messages being delivered more than once.

•

•

•

Chapter 7

[231]

After obtaining a JMS session, an instance of javax.jms.MessageProducer
is obtained by invoking the createProducer() method on the session object.
The MessageProducer object is the one that will actually send messages to the
message queue. The injected Queue instance is passed as a parameter to the
createProducer() method; again, the value of the mappedName attribute for the
@Resource annotation decorating this object must match the JNDI name that we
gave our message queue when setting it up in the GlassFish web console.

After obtaining an instance of MessageProducer, the code creates a series of text
messages by invoking the createTextMessage() method on the session object. This
method returns an instance of a class implementing the javax.jms.TextMessage
interface. This interface defines a method called setText(), which is used to
set the actual text in the message. After creating each text message and setting
its text, it is sent to the queue by invoking the send() method on the
MessageProducer object.

After sending the messages, the code disconnects from the JMS queue by invoking
the close() method on the MessageProducer object, on the Session object, and on
the Connection object.

Although this example sends only text messages to the queue, we are not limited to
this type of message. The JMS API provides several types of messages that can be
sent and received by JMS applications. All message types are defined as interfaces in
the javax.jms package. The following table lists all of the available message types:

Message Type Description
BytesMessage Allows sending an array of bytes as a message.
MapMessage Allows sending an implementation of java.util.Map as

a message.
ObjectMessage Allows sending any Java object implementing java.

io.Serializable as a message.
StreamMessage Allows sending an array of bytes as a message. Differs from

BytesMessage in that it stores the type of each primitive type
added to the stream.

TextMessage Allows sending a java.lang.String as a message.

For more information on all of the above message types, consult their JavaDoc
documentation at http://java.sun.com/javaee/5/docs/api/javax/jms/
package-summary.html.

Java Messaging Service

[232]

Retrieving Messages from a Message Queue
Of course, there is no point in sending messages from a queue if nothing is going to
receive them. The following example illustrates how to retrieve messages from a JMS
message queue:

package net.ensode.glassfishbook;

import javax.annotation.Resource;
import javax.jms.Connection;
import javax.jms.ConnectionFactory;
import javax.jms.JMSException;
import javax.jms.MessageConsumer;
import javax.jms.Queue;
import javax.jms.Session;
import javax.jms.TextMessage;

public class MessageReceiver
{
 @Resource(mappedName = "jms/GlassFishBookConnectionFactory")
 private static ConnectionFactory connectionFactory;
 @Resource(mappedName = "jms/GlassFishBookQueue")
 private static Queue queue;

 public void getMessages()
 {
 Connection connection;
 MessageConsumer messageConsumer;
 TextMessage textMessage;
 boolean goodByeReceived = false;

 try
 {
 connection = connectionFactory.createConnection();
 Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);
 messageConsumer = session.createConsumer(queue);
 connection.start();

 while (!goodByeReceived)
 {
 System.out.println("Waiting for messages...");
 textMessage = (TextMessage) messageConsumer.receive();

 if (textMessage != null)
 {
 System.out.print("Received the following message: ");
 System.out.println(textMessage.getText());
 System.out.println();

Chapter 7

[233]

 }

 if (textMessage.getText() != null
 && textMessage.getText().equals("Good bye!"))
 {
 goodByeReceived = true;
 }
 }

 messageConsumer.close();
 session.close();
 connection.close();
 }
 catch (JMSException e)
 {
 e.printStackTrace();
 }
 }

 public static void main(String[] args)
 {
 new MessageReceiver().getMessages();
 }
}

Just as in the previous example, an instance of javax.jms.ConnectionFactory and
an instance of javax.jms.Queue are injected by using the @Resource annotation.
Getting a connection and a JMS session is exactly the same here as in the previous
example.

In this example, we obtain an instance of javax.jms.MessageConsumer by calling
the createConsumer() method on the JMS session object. When we are ready to
start receiving messages from the message queue, we need to invoke the start()
method on the JMS connection object.

Code not receiving messages?
A common mistake when writing JMS message consumers is to fail to
call the start() method on the JMS connection object. If our code is
not receiving messages it should be receiving, we need to make sure we
didn't forget to call this method.

Messages are received by invoking the receive() method on the instance of
MessageConsumer obtained from the JMS session. This method returns an instance
of a class implementing the javax.jms.Message interface. It must be cast to the
appropriate type in order to obtain the actual message.

Java Messaging Service

[234]

In this particular example, we placed this method call in a while loop as we are
expecting a message that will let us know that no more messages are coming.
Specifically, we are looking for a message containing the text "Good bye!". Once
we receive this message, we break out of the loop and continue processing. In this
particular case, there is no more processing to do, therefore all we do is call the
close() method on the message consumer object, on the session object, and on the
connection object.

Just as in the previous example, using the appclient utility allows us to inject
resources into the code, and prevents us from having to add any libraries to the
CLASSPATH. After executing the code through the appclient utility, we should see
the following output in the command line:

appclient -client target/jmsptpconsumer.jar

Waiting for messages...

Received the following message: Testing, 1, 2, 3. Can you hear me?

Waiting for messages...

Received the following message: Do you copy?

Waiting for messages...

Received the following message: Good bye!

This of course, assumes that the previous example was already executed and it
placed messages in the message queue.

Asynchronously Receiving Messages from a
Message Queue
The MessageConsumer.receive() method has a disadvantage; it blocks execution
until a message is received from the queue. We can avoid this disadvantage by
receiving messages asynchronously via an implementation of the javax.jms.
MessageListener interface.

The javax.jms.MessageListener interface contains a single method called
onMessage; it takes an instance of a class implementing the javax.jms.Message
interface as its sole parameter. The following example illustrates a typical
implementation of this interface:

package net.ensode.glassfishbook;

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.TextMessage;

Chapter 7

[235]

public class ExampleMessageListener implements MessageListener
{

 public void onMessage(Message message)
 {
 TextMessage textMessage = (TextMessage)message;

 try
 {
 System.out.print("Received the following message: ");
 System.out.println(textMessage.getText());
 System.out.println();
 }
 catch (JMSException e)
 {
 e.printStackTrace();
 }
 }

}

In this case, the onMessage() method simply outputs the message text to the console.

Our main code can now delegate message retrieval to our custom MessageListener
implementation.

package net.ensode.glassfishbook;

import javax.annotation.Resource;
import javax.jms.Connection;
import javax.jms.ConnectionFactory;
import javax.jms.JMSException;
import javax.jms.MessageConsumer;
import javax.jms.Queue;
import javax.jms.Session;

public class AsynchMessReceiver
{
 @Resource(mappedName = "jms/GlassFishBookConnectionFactory")
 private static ConnectionFactory connectionFactory;
 @Resource(mappedName = "jms/GlassFishBookQueue")
 private static Queue queue;

 public void getMessages()
 {
 Connection connection;
 MessageConsumer messageConsumer;

 try
 {
 connection = connectionFactory.createConnection();
 Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);

Java Messaging Service

[236]

 messageConsumer = session.createConsumer(queue);
 messageConsumer.setMessageListener(

 new ExampleMessageListener());

 connection.start();

 System.out.println("The above line will allow "
 + "the MessageListener implementation to "

 + "receive and process messages from "
 + "the queue.");

 Thread.sleep(1000);
 System.out.println("Our code does not have to block "
 + "while messages are received.");
 Thread.sleep(1000);
 System.out.println("It can do other stuff "
 + "(hopefully something more useful than sending "
 + "silly output to the console. :)");
 Thread.sleep(1000);

 messageConsumer.close();
 session.close();
 connection.close();

 }
 catch (JMSException e)
 {
 e.printStackTrace();
 }
 catch (InterruptedException e)
 {
 e.printStackTrace();
 }
 }

 public static void main(String[] args)
 {
 new AsynchMessReceiver().getMessages();
 }
}

The only relevant difference between this example and the one in the previous
section is that in this case, we are calling the setMessageListener() method on
the instance of javax.jms.MessageConsumer obtained from the JMS session. We
pass an instance of our custom implementation of javax.jms.MessageListener
to this method; its onMessage() method is automatically called whenever there is a
message waiting in the queue. By using this approach, the main code does not block
while waiting to receive messages.

Chapter 7

[237]

Executing this example (using, of course, GlassFish's appclient utility), results in
the following output:

appclient -client target/jmsptpasynchconsumer.jar

The above line will allow the MessageListener implementation to receive
and process messages from the queue.

Received the following message: Testing, 1, 2, 3. Can you hear me?

Received the following message: Do you copy?

Received the following message: Good bye!

Our code does not have to block while messages are received.

It can do other stuff (hopefully something more useful than sending silly
output to the console. :)

Notice how the messages were received and processed while the main thread was
executing. We can tell this is the case because the output of our MessageListener's
onMessage() method can be seen between calls to System.out.println() in the
primary class.

Browsing Message Queues
JMS provides a way to browse message queues without actually removing the
messages from the queue. The following example illustrates how to do this:

package net.ensode.glassfishbook;

import java.util.Enumeration;

import javax.annotation.Resource;
import javax.jms.Connection;
import javax.jms.ConnectionFactory;
import javax.jms.JMSException;
import javax.jms.Queue;
import javax.jms.QueueBrowser;
import javax.jms.Session;
import javax.jms.TextMessage;

public class MessageQueueBrowser
{
 @Resource(mappedName = "jms/GlassFishBookConnectionFactory")
 private static ConnectionFactory connectionFactory;
 @Resource(mappedName = "jms/GlassFishBookQueue")
 private static Queue queue;
 public void browseMessages()

Java Messaging Service

[238]

 {
 try
 {
 Enumeration messageEnumeration;
 TextMessage textMessage;
 Connection connection =
 connectionFactory.createConnection();

 Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);
 QueueBrowser browser = session.createBrowser(queue);

 messageEnumeration = browser.getEnumeration();

 if (messageEnumeration != null)
 {
 if (!messageEnumeration.hasMoreElements())
 {
 System.out.println(
 "There are no messages in the queue.");
 }
 else
 {
 System.out.println(
 "The following messages are in the queue:");
 while (messageEnumeration.hasMoreElements())
 {
 textMessage = (TextMessage)
 messageEnumeration.nextElement();
 System.out.println(textMessage.getText());
 }
 }
 }
 session.close();
 connection.close();
 }
 catch (JMSException e)
 {
 e.printStackTrace();
 }
 }

 public static void main(String[] args)
 {
 new MessageQueueBrowser().browseMessages();
 }
}

Chapter 7

[239]

As we can see, the procedure to browse messages in a message queue is
straightforward. We obtain a JMS connection and a JMS session in the usual way, then
invoke the createBrowser() method on the JMS session object. This method returns
an implementation of the javax.jms.QueueBrowser interface; this interface contains
the getEnumeration() method, which we can invoke to obtain an Enumeration
containing all messages in the queue. To examine the messages in the queue, we
simply traverse this enumeration and obtain the messages one by one. In this example,
we simply invoke the getText() method of each message in the queue.

Message Topics
Message topics are used when our JMS code uses the Publish/Subscribe (pub/sub)
messaging domain. When using this messaging domain, the same message can be
sent to all subscribers to the topic.

Sending Messages to a Message Topic
The following example illustrates how to send messages to a message topic:

package net.ensode.glassfishbook;

import javax.annotation.Resource;
import javax.jms.Connection;
import javax.jms.ConnectionFactory;
import javax.jms.JMSException;
import javax.jms.MessageProducer;
import javax.jms.Session;
import javax.jms.TextMessage;
import javax.jms.Topic;

public class MessageSender
{
 @Resource(mappedName = "jms/GlassFishBookConnectionFactory")
 private static ConnectionFactory connectionFactory;
 @Resource(mappedName = "jms/GlassFishBookTopic")

 private static Topic topic;

 public void produceMessages()
 {
 MessageProducer messageProducer;
 TextMessage textMessage;
 try
 {
 Connection connection =
 connectionFactory.createConnection();

Java Messaging Service

[240]

 Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);
 messageProducer = session.createProducer(topic);

 textMessage = session.createTextMessage();

 textMessage.setText(
 "Testing, 1, 2, 3. Can you hear me?");
 System.out.println("Sending the following message: "
 + textMessage.getText());
 messageProducer.send(textMessage);

 textMessage.setText("Do you copy?");
 System.out.println("Sending the following message: "
 + textMessage.getText());
 messageProducer.send(textMessage);

 textMessage.setText("Good bye!");
 System.out.println("Sending the following message: "
 + textMessage.getText());
 messageProducer.send(textMessage);

 messageProducer.close();
 session.close();
 connection.close();
 }
 catch (JMSException e)
 {
 e.printStackTrace();
 }

 }

 public static void main(String[] args)
 {
 new MessageSender().produceMessages();
 }
}

As we can see, this code is nearly identical to the MessageSender class we saw when
we discussed Point-To-Point messaging. As a matter of fact, the only lines of code
that are different are the ones that are highlighted. The JMS API was designed this
way so that application developers do not have to learn two different APIs for the
PTP and pub/sub domains.

As the code is nearly identical to the corresponding example in the Message Queues
section, we will only explain the differences between the two examples. In this
example, instead of declaring an instance of a class implementing javax.jms.Queue,
we declare an instance of a class implementing javax.jms.Topic. Just as in previous
examples, we use dependency injection to initialize the Topic object.

Chapter 7

[241]

After obtaining a JMS connection and a JMS session, we pass the Topic object to the
createProducer() method in the Session object. This method returns an instance of
javax.jms.MessageProducer that we can use to send messages to the JMS topic.

Receiving Messages from a Message Topic
Just as sending messages to a Message Topic is nearly identical to sending messages
to a Message Queue, receiving messages from a Message Topic is nearly identical to
receiving messages from a Message Queue.

package net.ensode.glassfishbook;

import javax.annotation.Resource;
import javax.jms.Connection;
import javax.jms.ConnectionFactory;
import javax.jms.JMSException;
import javax.jms.MessageConsumer;
import javax.jms.Session;
import javax.jms.TextMessage;
import javax.jms.Topic;

public class MessageReceiver
{
 @Resource(mappedName = "jms/GlassFishBookConnectionFactory")
 private static ConnectionFactory connectionFactory;
 @Resource(mappedName = "jms/GlassFishBookTopic")

 private static Topic topic;

 public void getMessages()
 {
 Connection connection;
 MessageConsumer messageConsumer;
 TextMessage textMessage;
 boolean goodByeReceived = false;

 try
 {
 connection = connectionFactory.createConnection();
 Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);
 messageConsumer = session.createConsumer(topic);

 connection.start();

 while (!goodByeReceived)
 {
 System.out.println("Waiting for messages...");
 textMessage = (TextMessage) messageConsumer.receive();

Java Messaging Service

[242]

 if (textMessage != null)
 {
 System.out.print("Received the following message: ");
 System.out.println(textMessage.getText());
 System.out.println();
 }

 if (textMessage.getText() != null
 && textMessage.getText().equals("Good bye!"))
 {
 goodByeReceived = true;
 }
 }

 messageConsumer.close();
 session.close();
 connection.close();
 }
 catch (JMSException e)
 {
 e.printStackTrace();
 }
 }

 public static void main(String[] args)
 {
 new MessageReceiver().getMessages();
 }
}

Once again the differences between this code and the corresponding code for PTP
are trivial. Instead of declaring an instance of a class implementing javax.jms.
Queue, we declare a class implementing javax.jms.Topic; we use the @Resource
annotation to inject an instance of this class into our code, using the JNDI name we
used when creating it in the GlassFish web console. After obtaining a JMS connection
and session, we pass the Topic object to the createConsumer() method in the
Session object. This method returns an instance of javax.jms.MessageConsumer
that we can use to receive messages from the JMS topic.

Using the pub/sub messaging domain, as illustrated in this section, has the
advantage that messages can be sent to several message consumers. We can easily
test this by concurrently executing two instances of the MessageReceiver class we
developed in this section, then executing the MessageSender class we developed in
the previous section. We should see console output for each instance, indicating that
both instances received all messages.

Chapter 7

[243]

Just as with message queues, messages can be retrieved asynchronously from a
message Topic. The procedure to do so is so similar to the message queue version
that we will not show an example. To convert the asynchronous example shown
earlier in this chapter to use a message topic, simply replace the javax.jms.Queue
variable with an instance of javax.jms.Topic and inject the appropriate instance by
using "jms/GlassFishBookTopic" as the value of the mappedName attribute of the
@Resource annotation decorating the instance of javax.jms.Topic.

Creating Durable Subscribers
The disadvantage of using the pub/sub messaging domain is that message
consumers must be executing when the messages are sent to the topic. If the message
consumer is not executing at the time, it will not receive the messages, whereas
in PTP, messages are kept in the queue until the message consumer executes.
Fortunately, the JMS API provides a way to use the pub/sub messaging domain
and keep messages in the topic until all subscribed message consumers execute and
receive the messages. This can be accomplished by creating durable subscribers to a
JMS Topic.

In order to be able to service durable subscribers, we need to set the ClientId
property of our JMS connection factory. Each durable subscriber must have a unique
client ID, therefore a unique connection factory must be declared for each potential
durable subscriber.

InvalidClientIdException?
Only one JMS client can connect to a Topic for a specific client ID, if more
than one JMS client attempts to obtain a JMS connection using the same
connection factory, a JMSException stating that the Client ID is already in
use will be thrown. The solution is to create a connection factory for each
potential client that will be receiving messages from the durable Topic.

As we mentioned before, the easiest way to add a connection factory is through
the GlassFish web console. Recall that to add a JMS connection factory through the
GlassFish web console, we need to expand the Resources node on the left-hand side,
then expand the JMS Resources node, click on the Connection Factories node, and
then click on the New... button in the main area of the page.

Java Messaging Service

[244]

Our next example will use the settings displayed in the following screenshot.

Before clicking on the OK button, we need to scroll to the bottom of the page, click
on the Add Property button, and enter a new property named ClientId. Our
example will use ExampleId as the value for this property.

Notice that GlassFish has two predefined properties called Password
and UserName. We can modify the default values for those properties
to require a user name and password in order to obtain a connection
from the connection factory. Whenever a user name and password
are required, we need to invoke an overloaded version of the
ConnectionFactory.getConnection() method; this overloaded
version takes two String parameters, the first one for the user name and
the second one for the password.

Now that we have set up GlassFish to be able to provide durable subscriptions, we
are ready to write some code to take advantage of them.

package net.ensode.glassfishbook;
import javax.annotation.Resource;
import javax.jms.Connection;
import javax.jms.ConnectionFactory;
import javax.jms.JMSException;
import javax.jms.MessageConsumer;

Chapter 7

[245]

import javax.jms.Session;
import javax.jms.TextMessage;
import javax.jms.Topic;

public class MessageReceiver
{
 @Resource(mappedName =

 "jms/GlassFishBookDurableConnectionFactory")

 private static ConnectionFactory connectionFactory;

 @Resource(mappedName = "jms/GlassFishBookTopic")
 private static Topic topic;

 public void getMessages()
 {
 Connection connection;
 MessageConsumer messageConsumer;
 TextMessage textMessage;
 boolean goodByeReceived = false;

 try
 {
 connection = connectionFactory.createConnection();
 Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);
 messageConsumer = session.createDurableSubscriber(topic,

 "Subscriber1");

 connection.start();

 while (!goodByeReceived)
 {
 System.out.println("Waiting for messages...");
 textMessage = (TextMessage) messageConsumer.receive();

 if (textMessage != null)
 {
 System.out.print("Received the following message: ");
 System.out.println(textMessage.getText());
 System.out.println();
 }

 if (textMessage.getText() != null
 && textMessage.getText().equals("Good bye!"))
 {
 goodByeReceived = true;
 }
 }

 messageConsumer.close();
 session.close();

Java Messaging Service

[246]

 connection.close();
 }
 catch (JMSException e)
 {
 e.printStackTrace();
 }
 }

 public static void main(String[] args)
 {
 new MessageReceiver().getMessages();
 }
}

As you can see, this code is not much different from previous examples whose
purpose was to retrieve messages. There are only two differences from previous
examples: The instance of ConnectionFactory we are injecting is the one we set
up earlier in this section to handle durable subscriptions, and instead of calling
the createSubscriber() method on the JMS session object, we are calling
createDurableSubscriber(). The createDurableSubscriber() method takes two
arguments, a JMS Topic object to retrieve messages from and a String designating
a name for this subscription. This second parameter must be unique among all
subscribers to the durable topic.

Summary
In this chapter, we covered how to set up JMS connection factories, JMS message
queues, and JMS message topics in GlassFish by using the GlassFish web console.

We also covered how to send messages to a message queue via the� javax.jms.
MessageProducer interface.

Additionally, we covered how to receive messages from a message queue via the
javax.jms.MessageConsumer interface. We also covered how to asynchronously
receive messages from a message queue by implementing the javax.jms.
MessageListener interface.

We also saw how to use the above interfaces to send and receive messages to and
from a JMS message topic.

We also covered how to browse messages in a message queue without removing the
messages from the queue via the� javax.jms.QueueBrowser interface.

Finally, we saw how to set up and interact with durable subscriptions to JMS topics.

Security
In this chapter, we will cover how to secure Java EE applications by taking
advantage of GlassFish's built-in security features. Java EE security relies on the Java
Authentication and Authorization Service (JAAS) API. As we shall see, securing
Java EE applications requires very little coding; for the most part, securing an
application is achieved by setting up users and security groups in a security realm in
the application server, then configuring our applications to rely on a specific security
realm for authentication and authorization.

Some of the topics we will cover include:

The Admin realm
The File realm
The Certificate realm

Creating self-signed security certificates
The JDBC realm
Custom Realms

Security Realms
Security realms are, in essence, collections of users and related security groups.
Users are application users. A user can belong to one or more security group; the
groups that the user belongs to define what actions the system will allow the user to
perform. For example, an application can have regular users who can only use the
basic application functionality, and it can have administrators who, in addition to
being able to use basic application functionality, can add additional users to
the system.

•

•

•

°

•

•

Security

[248]

Security realms store user information (user name, password, and security groups);
applications don't need to implement this functionality, they can simply be
configured to obtain this information from a security realm. A security realm can be
used by more than one application.

Predefined Security Realms
GlassFish comes preconfigured with three predefined security realms: admin-realm,
the file realm, and the certificate realm. admin-realm is used to manage user's access
to the GlassFish web console and shouldn't be used for other applications. The file
realm stores user information in a file. The certificate realm looks for a client-side
certificate to authenticate the user.

Chapter 8

[249]

In addition to the predefined security realms, we can add additional realms with
very little effort. We will cover how to do this later in this chapter, but first let's
discuss GlassFish's predefined security realms.

admin-realm
To illustrate how to add users to a realm, let's add a new user to admin-realm. This
will allow this additional user to log in to the GlassFish web console. In order to add
a user to admin-realm, log in to the GlassFish web console, expand the Configuation
node at the left-hand side, then expand the Security node, then the Realms node,
and click on admin-realm. The main area of the page should look like the
following screenshot:

Security

[250]

To add a user to the realm, click on the button labeled Manage Users at the top left.
The main area of the page should now look like this:

To add a new user to the realm, simply click on the New... button at the top left of
the screen. Then enter the new user information.

In the above screenshot, we added a new user named "root", added this user to the
"asadmin" group, and entered this user's password.

The GlassFish web console will only allow users in the "asadmin" group
to log in. Failing to add our user to this security group would prevent
him/her from logging in to the console.

Chapter 8

[251]

We have successfully added a new user for the GlassFish web console. We can test
this new account by logging into the console with this new user's credentials.

The file Realm
The second predefined realm in GlassFish is the file realm. This realm stores user
information encrypted in a text file. Adding users to this realm is very similar to
adding users to admin-realm. We can add a user by expanding the Configuration
node, then expanding the Security node, then the Realms node, then clicking on file,
then clicking on the Manage Users button and clicking on the New... button.

As this realm is meant for us to use for our applications, we can come up with our
own groups. In this example, we added a user with a User ID of "peter" to the groups
"appuser" and "appadmin".

Security

[252]

Clicking the OK button should save the new user and take us to the user list for
this realm.

Clicking the New... button allows us to add additional users to the realm. Let's add
an additional user called "joe" and belonging only to the "appuser" group.

As we have seen in this section, adding users to the file realm is very simple. We will
now illustrate how to authenticate and authorize users via the file realm.

File Realm Basic Authentication
In the previous section, we covered how to add users to the file realm and how to
assign roles to these users. In this section, we will illustrate how to secure a web
application so that only properly authenticated and authorized users can access it.
This web application will use the file realm for user access control.

Chapter 8

[253]

The application will consist of a few very simple JSPs. All authentication logic is
taken care of by the application server, therefore the only place we need to make
modifications in order to secure the application is in its deployment descriptors,
web.xml and sun-web.xml. We will first discuss web.xml, which is shown next.

<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="2.5"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.
sun.com/xml/ns/javaee/web-app_2_5.xsd">
 <security-constraint>

 <web-resource-collection>

 <web-resource-name>Admin Pages</web-resource-name>

 <url-pattern>/admin/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>admin</role-name>

 </auth-constraint>

 </security-constraint>

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>All Pages</web-resource-name>

 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>user</role-name>

 </auth-constraint>

 </security-constraint>

 <login-config>

 <auth-method>BASIC</auth-method>

 <realm-name>file</realm-name>

</web-app>

The <security-constraint> element defines who can access pages matching
a certain URL pattern. The URL pattern of the pages is defined inside the
<url-pattern> element, which, as shown in the example, must be nested inside
a <web-resource-collection> element. Roles allowed to access the pages
are defined in the <role-name> element, which must be nested inside an
<auth-constraint> element.

In the above example, we define two sets of pages to be protected. The first set of
pages is any page whose URL starts with /admin. These pages can only be accessed
by users with the role of admin. The second set of pages is all pages, defined by the
URL pattern of /*. Only users with the role of user can access these pages. It is

Security

[254]

worth noting that the first set of pages is a subset of the second set, that is, any page
whose URL matches /admin/* also matches /*; in cases like this the most specific
case "wins". In this particular case, users with a role of user (and without the role of
admin) will not be able to access any page whose URL starts with /admin.

The next element we need to add to web.xml in order to protect our pages is the
<login-config> element. This element must contain an <auth-method> element
that defines the authorization method for the application. Valid values for this
element include BASIC, DIGEST, FORM, and CLIENT-CERT.

BASIC indicates that basic authentication will be used. This type of authentication
will result in a browser-generated popup, prompting the user for a user name and
password, being displayed the first time a user tries to access a protected page. Unless
using the HTTPS protocol, when using basic authentication, the user's credentials are
Base64 encoded, not encrypted. It would be fairly easy for an attacker to decode these
credentials; therefore using basic authentication is not recommended.

DIGEST is similar to basic authentication except it uses an MD5 DIGEST to encrypt
the user credentials instead of sending them Base64 encoded.

FORM uses a custom HTML or JSP page containing an HTML form with user
name and password fields. The values in the form are then checked against the
security realm for user authentication and authorization. Unless using HTTPS, user
credentials are sent in clear text when using form-based authentication, therefore
using HTTPS is recommended because it encrypts the data. We will cover setting up
GlassFish to use HTTPS, later in this chapter.

CLIENT-CERT uses client-side certificates to authenticate and authorize the user.

The <realm-name> element of <login-config> indicate which security realm to use
to authenticate and authorize the user. In this particular example, we are using the
file realm.

All of the web.xml elements we have discussed in this section can be used with
any security realm; they are not tied to the file realm. The only thing that ties our
application to the file realm is the value of the <realm-name> element. Something
else to keep in mind is that not all authentication methods are supported by all
realms. The file realm supports only basic and form-based authentication.

Before we can successfully authenticate our users, we need to link the user roles
defined in web.xml with the groups defined in the realm. We accomplish this in the
sun-web.xml deployment descriptor.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE sun-web-app PUBLIC "-//Sun Microsystems, Inc.//DTD
Application Server 9.0 Servlet 2.5//EN" "http://www.sun.com/software/

Chapter 8

[255]

appserver/dtds/sun-web-app_2_5-0.dtd">
<sun-web-app>
 <security-role-mapping>

 <role-name>admin</role-name>

 <group-name>appadmin</group-name>

 </security-role-mapping>

 <security-role-mapping>

 <role-name>user</role-name>

 <group-name>appuser</group-name>

 </security-role-mapping>

</sun-web-app>

As can be seen in the example, the sun-web.xml deployment descriptor can have
one or more <security-role-mapping> elements; one of these elements for each
role defined in web.xml is needed. The <role-name> subelement indicates the role to
map. Its value must match the value of the corresponding <role-name> element in
web.xml. The <group-name> subelement must match the value of a security group in
the realm used to authenticate users in the application.

In this example, the first <security-role-mapping> element maps the "admin" role
defined in the application's web.xml deployment descriptor to the "appadmin" group
we created when adding users to the file realm earlier in the chapter. The second
<security-role-mapping> maps the "user" role in web.xml to the "appuser" group
in the file realm.

As we mentioned earlier, there is nothing we need to do in our code in order to
authenticate and authorize users. All we need to do is modify the application's
deployment descriptors as described in this section. As our application is nothing but
a few simple JSPs, we will not show the source code for them. The structure of our
application is shown in the following screenshot:

Security

[256]

Based on the way we set up our application in the deployment descriptors, users
with a role of "user" will be able to access the two JSPs at the root of the application
(index.jsp and random.jsp). Only users with the role of "admin" will be able to
access any pages under the "admin" folder, which in this particular case is a single
JSP named index.jsp.

After packaging and deploying our application and pointing the browser to the URL
of any of its pages, we should see a popup asking for a user name and a password.

After entering the correct user name and password, we are directed to the page we
were attempting to see.

At this point, the user can navigate to any page he or she is allowed to access in the
application, either by following links or by typing the URL in the browser, without
having to re-enter his/her user name and password.

Notice that we logged in as user joe; this user belongs only to the user role, therefore
he does not have access to any page with a URL that starts with /admin. If joe tries to
access one of these pages, he will see the following error message in the browser.

Chapter 8

[257]

Only users belonging to the admin role can see pages that match the above URL.
When we were adding users to the file realm, we added a user named peter that had
this role. If we log in as peter, we will be able to see the requested page. For basic
authentication, the only way possible to log out of the application is to close the
browser, therefore to log in as peter we need to close and reopen the browser.

As we mentioned before, one disadvantage of the basic authentication method we
used in this example is that login information is not encrypted. One way to get
around this is to use the HTTPS (HTTP over SSL) protocol; when using this protocol
all information between the browser and the server is encrypted.

Security

[258]

The easiest way to use HTTPS is by modifying the application web.xml
deployment descriptor.

<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="2.5"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.
sun.com/xml/ns/javaee/web-app_2_5.xsd">
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Admin Pages</web-resource-name>
 <url-pattern>/admin/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>admin</role-name>
 </auth-constraint>
 <user-data-constraint>

 <transport-guarantee>CONFIDENTIAL</transport-guarantee>

 </user-data-constraint>

 </security-constraint>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>AllPages</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>user</role-name>
 </auth-constraint>
 <user-data-constraint>

 <transport-guarantee>CONFIDENTIAL</transport-guarantee>

 </user-data-constraint>

 </security-constraint>
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>file</realm-name>
 </login-config>
</web-app>

As we can see, all we need to do to have the application be accessed only through
HTTPS is to add a <user-data-constraint> element containing a nested
<transport-guarantee> element to each set of pages we want to encrypt traffic.
Sets of pages to be protected are declared in the <security-constraint> elements
in the web.xml deployment descriptor.

Chapter 8

[259]

Now, when we access the application through the (unsecure) HTTP port (by default
this is 8080), the request is automatically forwarded to the (secure) HTTPS port
(default of 8181).

In this example, we set the value of the <transport-guarantee> to CONFIDENTIAL.
This has the effect of encrypting all the data between the browser and the server,
also, if the request is made through the unsecured HTTP port, it is automatically
forwarded to the secured HTTPS port.

Another valid value for the <transport-guarantee> element is INTEGRAL. When
using this value, the integrity of the data between the browser and the server is
guaranteed; in other words, the data cannot be changed in transit. When using this
value, requests made over HTTP are not automatically forwarded to HTTPS; if a user
attempts to access a secure page via HTTP when this value is used, the browser will
deny the request and return a 403 (Access Denied) error.

The third and last valid value for the <transport-guarantee> is NONE. When using
this value, no guarantees are made about the integrity or confidentiality of the data.
NONE is the default value used when the <transport-guarantee> element is not
present in the application's web.xml deployment descriptor.

After making the above modifications to the web.xml deployment descriptor,
redeploying the application and pointing the browser to any of the pages in the
application, we should see the following.

Security

[260]

The reason we see this warning window is that, in order for a server to use the
HTTPS protocol, it must have an SSL certificate. Typically, SSL certificates are issued
by certificate authorities such as Verisign or Thawte. These certificate authorities
digitally sign the certificate; by doing this they certify that the server belongs to the
entity to which it claims to belong.

A digital certificate from one of these certificate authorities typically costs around
$400 USD, and expires after a year. As the cost of these certificates may be
prohibitive for development or testing purposes, GlassFish comes preconfigured
with a self-signed SSL certificate. As this certificate has not being signed by a
certificate authority, the browser pops up the above warning window when we try to
access a secured page via HTTPS. We can simply click OK to accept the certificate.

Once we accept the certificate, we are prompted for a user name and password; after
entering the appropriate credentials, we are allowed access to the requested page.

Notice the URL in the above screenshot; the protocol is set to HTTPS, and the
port is 8181. The URL we pointed the browser to was http://localhost:8080/
filerealmauthhttps/random.jsp; because of the modifications we made to
the application's web.xml deployment descriptor, the request was automatically
forwarded to this URL. Of course, users may directly type the secure URL and it will
work without a problem.

Any data transferred over HTTPS is encrypted, including the user name and
password entered at the pop-up window generated by the browser. Using HTTPS
allows us to safely use basic authentication. However, basic authentication has
another disadvantage, which is that the only way that a user can log out from
the application is to close the browser. If we need to allow users to log out of the
application without closing the browser, we need to use form-based authentication.

Chapter 8

[261]

When using form-based authentication, we need to make some modifications to the
application's web.xml deployment descriptor.

<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="2.5"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.
sun.com/xml/ns/javaee/web-app_2_5.xsd">
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Admin Pages</web-resource-name>
 <url-pattern>/admin/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>admin</role-name>
 </auth-constraint>
 </security-constraint>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>AllPages</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>user</role-name>
 </auth-constraint>
 </security-constraint>
 <login-config>
 <auth-method>FORM</auth-method>

 <realm-name>file</realm-name>
 <form-login-config>

 <form-login-page>/login.jsp</form-login-page>

 <form-error-page>/loginerror.jsp</form-error-page>

 </form-login-config>

 </login-config>
 <servlet>
 <servlet-name>LogoutServlet</servlet-name>
 <servlet-class>
 net.ensode.glassfishbook.LogoutServlet
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>LogoutServlet</servlet-name>
 <url-pattern>/logout</url-pattern>
 </servlet-mapping>
</web-app>

Security

[262]

When using form-based authentication, we simply use FORM as the value of the
<auth-method> element in web.xml. When using this authentication method, we
need to provide a login page and a login error page. We indicate the URLs for the
login and login error pages as the values of the <form-login-page> and <form-
error-page> elements, respectively. As can be seen in the example, these elements
must be nested inside the <form-login-config> element.

The markup for the login page for our application is shown next.

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Login</title>
</head>
<body>
<p>Please enter your username and password to access the application</
p>
<form method="POST" action="j_security_check">

<table cellpadding="0" cellspacing="0" border="0">
 <tr>
 <td align="right">Username: </td>
 <td>
 <input type="text" name="j_username">

 </td>
 </tr>
 <tr>
 <td align="right">Password: </td>
 <td>
 <input type="password" name="j_password">

 </td>
 </tr>
 <tr>
 <td></td>
 <td><input type="submit" value="Login"></td>
 </tr>
</table>
</form>
</body>
</html>

Chapter 8

[263]

The login page for an application using form-based authentication must contain
a form whose method is "POST" and whose action is "j_security_check". We
don't need to implement a servlet or anything else to process this form. The code to
process it is supplied by the application server.

The form in the login page must contain a text field named j_username; this text
field is meant to hold the user's user name. Additionally, the form must contain a
password field named j_password, meant for the user's password. Of course, the
form must contain a submit button to submit the data to the server.

The only requirement for a login page is for it to have a form whose attributes match
those in the preceding example, and the j_username and j_password input fields as
described in the above paragraph.

There are no special requirements for the error page. Of course, it should show an
error message telling the user that login was unsuccessful; however, it can contain
anything we wish. The error page for our application simply tells the user that there
was an error logging in, and links back to the login page to give the user a chance to
try again.

In addition to a login page and a login error page, we added a servlet to our
application. This servlet allows us to implement logout functionality, something that
wasn't possible when we were using basic authentication.

package net.ensode.glassfishbook;

import java.io.IOException;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class LogoutServlet extends HttpServlet
{
 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException, IOException
 {
 request.getSession().invalidate();

 response.sendRedirect("index.jsp");
 }
}

As you can see, all we need to do to log out the user is invalidate the session. In our
servlet, we redirect the response to the index.jsp page; as the session is invalid at
this point, the security mechanism will "kick in" and automatically direct the user to
the login page.

Security

[264]

We are now ready to test form-based authentication; after building our application,
deploying it, and pointing the browser to any of its pages, we should see our login
page rendered in the browser.

If we submit invalid credentials, we are automatically forwarded to the login
error page.

We can click on the Try again link to try again. After entering valid credentials, we
are allowed into the application.

Chapter 8

[265]

As you can see, we added a logout link to the page; this page directs the user to the
logout servlet, which as we mentioned before simply invalidates the session. From
the user's point of view, this link will simply log them out and direct them to the
login screen.

The certificate Realm
The certificate realm uses client-side certificates for authentication. Just like
server-side certificates, client side certificates are typically obtained from a certificate
authority like Verisign or Thawte. These certificate authorities verify that the
certificate really belongs to the entity to which it claims to belong.

Obtaining a certificate from a certificate authority costs money and takes some time.
It might not be practical to obtain a certificate from one of the certificate authorities
when we are developing and or testing our application. Fortunately, we can create
self-signed certificates for testing purposes.

Creating Self-Signed Certificates
We can create self-signed certificates with little effort using the keytool utility
included with the Java Development Kit.

We will only briefly cover some of the keytool utility functionality;
specifically, we will cover what is necessary to create and import
self-signed certificates into GlassFish and into the browser. To learn
more about the keytool utility, refer to http://java.sun.com/
j2se/1.5.0/docs/tooldocs/solaris/keytool.html.

Generating a self-signed certificate can be accomplished by typing the following
command in the command line:

keytool -genkey -v -alias selfsignedkey -keyalg RSA -storetype PKCS12 -
keystore client_keystore.p12 -storepass wonttellyou -keypass wonttellyou

The above command assumes that the keytool utility is in the system PATH. This
tool can be found under the bin directory, under the directory where the Java
Development Kit is installed.

Substitute the values for the -storepass and -keypass parameters with your own
password; both of these passwords must be the same in order to successfully use
the certificate to authenticate the client. You may choose any value for the -alias
parameter. You may also choose any value for the -keystore parameter; however,
the value must end in .p12, as this command generates a file that needs to be
imported into the web browser, and this file won't be recognized unless it has the
p12 extension.

Security

[266]

After entering this command from the command line, keytool will prompt for
some information.

What is your first and last name?

 [Unknown]: David Heffelfinger

What is the name of your organizational unit?

 [Unknown]: Book Writing Division

What is the name of your organization?

 [Unknown]: Ensode.net

What is the name of your City or Locality?

 [Unknown]: Fairfax

What is the name of your State or Province?

 [Unknown]: Virginia

What is the two-letter country code for this unit?

 [Unknown]: US

Is CN=David Heffelfinger, OU=Ensode.net, O=Book Writing Division,
L=Fairfax, ST=Virginia, C=US correct?

 [no]: y

Generating 1,024 bit RSA key pair and self-signed certificate
(SHA1withRSA) with a validity of 90 days

 for: CN=David Heffelfinger, OU=Ensode.net, O=Book Writing
Division, L=Fairfax, ST=Virginia, C=US

[Storing client_keystore.p12]

After you enter the data for each prompt, keytool will generate the certificate; it will
be stored in the current directory. The name of the file will be the value we used for
the -keystore parameter (client_keystore.p12 in the example).

To be able to use this certificate to authenticate ourselves, we need to import it into
the browser. The procedure, although similar, varies from browser to browser. In
Firefox, this can be accomplished by going to Edit|Preferences, then clicking on
the Advanced icon at the top of the resulting pop-up window, then clicking on the
Encryption tab.

Chapter 8

[267]

We then need to click on the View Certificates button, click on the Import button
on the resulting window, then navigate and select our certificate from the directory
in which it was created. At this point, Firefox will ask us for the password used
to encrypt the certificate; in our example, we used wonttellyou as the password.
After entering the password, we should see a pop-up window confirming that our
certificate was successfully imported. We should then see it in the list of certificates.

We have now added our certificate to Firefox so that it can be used to authenticate
ourselves. If you are using another web browsers, the procedure will be similar.
Consult your browser's documentation for details.

Security

[268]

The certificate we created in the previous step needs to be exported into a format that
GlassFish can understand:

keytool -export -alias selfsignedkey -keystore client_keystore.p12 -
storetype PKCS12 -storepass wonttellyou -rfc -file selfsigned.cer

The values for the -alias, -keystore, and -storepass parameters must match
the values used in the previous command. You may choose any value for the -file
parameter, but it is recommended for the value to end in the .cer extension.

As our certificate was not issued by a certificate authority, GlassFish by default will
not recognize it as a valid certificate. GlassFish knows what certificates to trust based
on the certificate authority that created them. The way this is implemented is that
certificates for these various authorities are stored in a keystore named cacerts.jks.
This keystore can be found in the following location:

[glassfish installation directory]/glassfish/domains/domain1/config/
cacerts.jks.

In order for GlassFish to accept our certificate, we need to import it into the cacerts
keystore. This can be accomplished by issuing the following command from the
command line:

keytool -import -file selfsigned.cer -keystore [glassfish installation
directory]/glassfish/domains/domain1/config/cacerts.jks -keypass changeit
-storepass changeit

At this point, keytool will display the certificate information in the command line
and ask us if we want to trust it.

Owner: CN=David Heffelfinger, OU=Book Writing Division, O=Ensode.net,
L=Fairfax, ST=Virginia, C=US

Issuer: CN=David Heffelfinger, OU=Book Writing Division, O=Ensode.net,
L=Fairfax, ST=Virginia, C=US

Serial number: 464f452f

Valid from: Sat May 19 14:42:55 EDT 2007 until: Fri Aug 17 14:42:55 EDT
2007

Certificate fingerprints:

 MD5: A9:22:8E:2D:A3:06:BB:09:47:A7:02:E3:17:86:A2:6B

 SHA1: 16:E2:85:BC:BF:19:77:D8:02:49:31:22:FE:A8:3A:D8:
 A7:3F:62:03

 Signature algorithm name: SHA1withRSA

 Version: 3

Trust this certificate? [no]: y

Certificate was added to keystore

Chapter 8

[269]

Once we add the certificate to the cacerts.jks keystore, we need to restart the
domain for the change to take effect.

What we are effectively doing here is adding ourselves as a certificate authority that
GlassFish will trust. This of course should not be done in a production system.

The value for the -file parameter must match the value we used for this same
parameter when we exported the certificate.

"changeit" is the default password for the -keypass and -storepass
parameters for the cacerts.jks keystore. This value can be changed by
issuing the following command:
[glassfish installation directory]/glassfish/bin/asadmin
change-master-password --savemasterpassword=true

This command will prompt for the existing master password and for the
new master password. The –savemasterpassword=true parameter
is optional; it saves the master password into a file called master-
password in the root directory for the domain. If we don't use this
parameter when changing the master password, then we will need to
enter the master password every time we want to start the domain.

Now that we have created a self-signed certificate, imported it into our browser, and
established ourselves as a certificate authority that GlassFish will trust, we are ready
to develop an application that will use client-side certificates for authentication.

Configuring Applications to Use the Certificate Realm
As we are taking advantage of Java EE 5 security features, we don't need to modify
any code at all in order to use the certificate realm. All we need to do is modify
the application's configuration in its deployment descriptors, web.xml and
sun-web.xml.

<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="2.5"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://
 java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>AllPages</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>users</role-name>
 </auth-constraint>

Security

[270]

 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 </security-constraint>
 <login-config>

 <auth-method>CLIENT-CERT</auth-method>

 <realm-name>certificate</realm-name>

 </login-config>

</web-app>

The main difference between this web.xml deployment descriptor and the one we
saw in the previous section is the contents of the <login-config> element. In this
case, we declared CLIENT-CERT as the authorization method and certificate as the
realm to use to authenticate. This will have the effect of GlassFish asking the browser
for a client certificate before allowing a user into the application.

When using client-certificate authentication, the request must always be done via
HTTPS, therefore; it is a good idea to add the <transport-guarantee> element
with a value of CONFIDENTIAL to the web.xml deployment descriptor. Recall from
the previous section that this has the effect of forwarding any requests through the
HTTP port to the HTTPS port. If we don't add this value to the web.xml deployment
descriptor, any requests through the HTTP port will fail because client-certificate
authentication cannot be done through the HTTP protocol.

Notice that we declared that only users in the role of users can access any page in
the system; we did this by adding the role of users to the <role-name> element
nested inside the <auth-constraint> element of the <security-constraint>
element in the web.xml deployment descriptor. In order to allow access to
authorized users, we need to add them to this role. This is done in the sun-web.xml
deployment descriptor.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE sun-web-app PUBLIC "-//Sun Microsystems, Inc.//DTD
Application Server 9.0 Servlet 2.5//EN" "http://www.sun.com/software/
appserver/dtds/sun-web-app_2_5-0.dtd">
<sun-web-app>
 <security-role-mapping>

 <role-name>users</role-name>

 <principal-name>CN=David Heffelfinger, OU=Book Writing Division,
O=Ensode.net, L=Fairfax, ST=Virginia, C=US</principal-name>

 </security-role-mapping>

</sun-web-app>

Chapter 8

[271]

This assignment is done by mapping the principal (user) to a role in a
<security-role-mapping> element in the sun-web.xml deployment descriptor;
its <role-name> subelement must contain the role name, and the <principal-name>
subelement contains the user name. This user name is taken from the certificate.

If you are not sure of the name to use, this name can be obtained from the certificate
with the keytool utility.

keytool -printcert -file selfsigned.cer

Owner: CN=David Heffelfinger, OU=Book Writing Division, O=Ensode.net,
L=Fairfax, ST=Virginia, C=US

Issuer: CN=David Heffelfinger, OU=Book Writing Division, O=Ensode.net,
L=Fairfax, ST=Virginia, C=US

Serial number: 464f452f

Valid from: Sat May 19 14:42:55 EDT 2007 until: Fri Aug 17 14:42:55 EDT
2007

Certificate fingerprints:

 MD5: A9:22:8E:2D:A3:06:BB:09:47:A7:02:E3:17:86:A2:6B

 SHA1: 16:E2:85:BC:BF:19:77:D8:02:49:31:22:FE:A8:3A:D8:
A7:3F:62:03

 Signature algorithm name: SHA1withRSA

 Version: 3

The value to use as <principal-name> is the line after Owner:. Please note that
the value of <principal-name> must be in the same line as its opening and closing
tags (<principal-name> and </principal-name>); if there are newline or carriage
return characters before or after the value, they are interpreted as being part of the
value and validation will fail.

As our application has a single user and a single role, we are ready to deploy it. If
we had more users we would have to add additional <security-role-mapping>
elements to our sun-web.xml deployment descriptor, at least one per user.
If we had users that belong to more than one role, then we would add a
<security-role-mapping> element for each role to which the user belongs, using
the <principal-name> value corresponding to the user's certificate for each one
of them.

Security

[272]

We are now ready to test our application; after we deploy it and point the browser
to any page in the application, we should see a screen like the following (assuming
the browser hasn't been configured to provide a default certificate any time a server
requests one):

After clicking the OK button, we are allowed to access the application.

Before allowing access to the application, GlassFish checks the certificate authority
that issued the certificate (as we self-signed the certificate, the owner of the
certificate and the certificate authority are the same), and checks against the list of
trusted certificate authorities. Because we added ourselves as a trusted authority
by importing our self-signed certificate into the cacerts.jks keystore, GlassFish
recognizes the certificate authority as a valid one. It then gets the principal name
from the certificate and compares it against entries in the application's sun-web.
xml; because we added ourselves to this deployment descriptor and gave ourselves a
valid role, we are allowed into the application.

Chapter 8

[273]

Defining Additional Realms
In addition to the three pre-configured security realms we discussed in the previous
section, we can create additional realms for application authentication. We can create
realms that behave exactly like the file or admin-realm realms; we can also create
realms that behave like the certificate realm. Additionally, we can create realms that
use other methods of authentication. We can authenticate users against an LDAP
database; we can also authenticate users against a relational database, and when
GlassFish is installed on a Solaris server, we can use Solaris authentication within
GlassFish. Also, if none of the above authentication mechanisms fits our needs, we
can implement our own.

Defining Additional File Realms
Expand the Configuration node, expand the Security node, click on the Realms
node, then click on the New... button on the resulting page in the main area of the
web console. We should now see a screen like the following:

Security

[274]

All we need to do to create an additional realm is enter a unique name for it in the
Name field, pick com.sun.enterprise.security.auth.realm.file.FileRealm
for the Class Name field (should be the default), and enter a value for the Key
File field; the value for this field must be the absolute path to a file where user
information will be stored. The JAAS context field will default to fileRealm; this
default should not be changed.

After entering all of the above information, we can click on the OK button and our
new realm will be created. We can then use it just like the predefined file realm.
Applications wishing to authenticate against this new realm must use its name
as the value of the <realm-name> element in the application's web.xml
deployment descriptor.

Defining Additional Certificate Realms
To define an additional certificate realm, we simply need to enter its name in the
Name field and pick com.sun.enterprise.security.auth.realm.certificate.
CertificateRealm as the value of the Class Name field, then click OK to create our
new realm.

Chapter 8

[275]

Applications wishing to use this new realm for authentication must use its name
as the value of the <realm-name> element in the web.xml deployment descriptor,
and specify CLIENT-CERT as the value of its <auth-method> element. Of course,
client certificates must be present and configured as explained in the Configuring
Applications to Use the Certificate Realm section.

Defining an LDAP Realm
We can easily set up a realm to authenticate against an LDAP (Lightweight Directory
Access Protocol) database. In order to do this we need, in addition to the obvious
step of entering a name for the realm, to select com.sun.enterprise.security.
auth.realm.ldap.LDAPRealm as the Class Name value for a new realm.

Security

[276]

We then need to enter a URL for the directory server in the Directory field, and the
Base Distinguished Name (DN) to be used to search user data as the value of the
Base DN field.

After creation of an LDAP realm, applications can use it to authenticate against
the LDAP database. The name of the realm needs to be used as the value of the
<realm-name> element in the application's web.xml deployment descriptor; the
value of the <auth-method> element must be either BASIC or FORM. Users and roles
in the LDAP database can be mapped to groups in the application's sun-web.xml
deployment descriptor, using the <principal-name>, <role-name>, and
<group-name> elements as discussed earlier in this chapter.

Defining a Solaris Realm
When GlassFish is installed in a Solaris server, it can "piggyback" on the operating
system authentication mechanism via a Solaris Realm. There are no special
properties for this type of realm, all we need to do to create one is pick a name for it
and select com.sun.enterprise.security.auth.realm.solaris.SolarisRealm
as the value of the Class Name field.

Chapter 8

[277]

The JAAS context field will default to solarisRealm; this default should not
be changed. After addition of the realm, applications can authenticate against it
using basic or form-based authentication. Operating-system groups and users can
be mapped to application roles defined in the application's web.xml deployment
descriptor via the <principal-name>, <role-name>, and <group-name> elements in
its sun-web.xml deployment descriptor.

Defining a JDBC Realm
Another type of realm we can create is a JDBC realm. This type of realm uses user
information stored in database tables for user authentication.

In order to illustrate how to authenticate against a JDBC realm, we need to create a
database to hold user information.

GROUPS
GROUP_ID INTEGER(10) NOT NULL (PK)
GROUP_NAME VARCHAR(20) NOT NULL
GROUP_DESC VARCHAR(200) NULL

USERS
USER_ID INTEGER(10) NOT NULL (PK)
USERNAME VARCHAR(10) NOT NULL
FIRST_NAME VARCHAR(15) NULL
MIDDLE_NAME VARCHAR(15) NULL
LAST_NAME VARCHAR(20) NULL
PASSWORD CHAR(32) NOT NULL USER_GROUPS

USER_ID INTEGER(10) NOT NULL (PK) (FK)
GROUP_ID INTEGER(10) NOT NULL (PK) (FK)

Our database consists of three tables. A USERS table holding user information,
a GROUPS table holding group information, and as there is a many-to-many
relationship between USERS and GROUPS, we need to add a join table to preserve data
normalization. The name of this table is USER_GROUPS.

Notice that the PASSWORD column of the USERS table is of type CHAR(32). The reason
we chose this type instead of VARCHAR is that by default, the JDBC realm expects
passwords to be encrypted as an MD5 hash, and these hashes are always
32 characters.

Passwords can be easily encrypted in the format expected by default, by using
the java.security.MessageDigest class included with the JDK. The following
example code will take a clear text password and create an encrypted MD5 hash
out of it.

Security

[278]

package net.ensode.glassfishbook;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

public class EncryptPassword
{

 public static String encryptPassword(String password)
 throws NoSuchAlgorithmException
 {
 MessageDigest messageDigest =

 MessageDigest.getInstance("MD5");

 byte[] bs;

 messageDigest.reset();
 bs = messageDigest.digest(password.getBytes());

 StringBuilder stringBuilder = new StringBuilder();

 //hex encode the digest
 for (int i = 0; i < bs.length; i++)

 {

 String hexVal = Integer.toHexString(0xFF & bs[i]);

 if (hexVal.length() == 1)

 {

 stringBuilder.append("0");

 }

 stringBuilder.append(hexVal);

 }

 return stringBuilder.toString();
 }

 public static void main(String[] args)
 {
 String encryptedPassword = null;

 try
 {

 if (args.length == 0)
 {
 System.err.println("Usage: java " +
 "net.ensode.glassfishbook.EncryptPassword " +
 "cleartext");
 }
 else
 {
 encryptedPassword = encryptPassword(args[0]);
 System.out.println(encryptedPassword);

Chapter 8

[279]

 }
 }
 catch (NoSuchAlgorithmException e)
 {
 e.printStackTrace();
 }
 }
}

The "meat" of this class is its encryptPassword() method. It basically takes a clear
text string and digests it using the MD5 algorithm by using the digest() method of
an instance of java.security.MessageDigest. It then encodes the digest as a series
of hexadecimal numbers. The reason this encoding is necessary is because GlassFish,
by default, expects MD5 digested passwords to be hex encoded.

When using JDBC realms, the Glassfish users and groups are not added to the
realm via the GlassFish console; instead, they are added by inserting data into the
appropriate tables.

Once we have the database that will hold user credentials in place, we are ready to
create a new JDBC realm.

We can create a JDBC realm by entering its name in the Name field of the New
Realm form in the GlassFish web console, then selecting com.sun.enterprise.
security.auth.realm.jdbc.JDBCRealm as the value of the Class Name field.

Security

[280]

There are a number of other properties we need to set for our new JDBC realm.

The JAAS context field will default to jdbcRealm for JDBC realms; this default
should not be changed. The value of the JNDI property must be the JNDI name of
the data source corresponding to the database that contains the realm's user and
group data. The value of the User Table property must be the name of the table that
contains user-name and password information.

Chapter 8

[281]

Notice, in the screenshot that, that we used V_USER_GROUPS as the
value for this property. V_USER_GROUPS is a database view that
contains both user and group information. The reason we didn't use the
USERS table directly is because GlassFish assumes that both the user table
and the group table contain a column containing the user name. Doing
this results in having duplicate data. To avoid this situation, we created a
view that we could use as the value of both the User Table Property and
the Group Table Property (to be discussed shortly).

The User Name property must contain the column in the User Table that contains
the user names. The Password property value must be the name of the column in the
User Table that contains the user's password. The value of the Group Table property
must be the name of the table containing user groups. The Group Name property
must contain the name of the column in the Group Table containing user
group names.

All other properties are optional and, in most cases, left blank. Of special interest is
the Digest property. This property allows us to specify the message digest algorithm
to use to encrypt the user's password. Valid values for this property include all
algorithms supported by the JDK; these algorithms are MD2, MD5, SHA-1, SHA-256,
SHA-384, and SHA-512. Additionally, if we wish to store user passwords in clear
text, we can do so by using the value "none" for this property.

Once we have defined our JDBC realm, we need to configure our application via its
web.xml and sun-web.xml deployment descriptors. Configuring an application to
rely on a JDBC realm for authorization and authentication is done just as when using
any other type of realm.

<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="2.5"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://
 java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Admin Pages</web-resource-name>
 <url-pattern>/admin/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>admin</role-name>
 </auth-constraint>
 </security-constraint>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>AllPages</web-resource-name>
 <url-pattern>/*</url-pattern>

Security

[282]

 </web-resource-collection>
 <auth-constraint>
 <role-name>user</role-name>
 </auth-constraint>
 </security-constraint>
 <login-config>
 <auth-method>FORM</auth-method>
 <realm-name>jdbc</realm-name>
 <form-login-config>
 <form-login-page>/login.jsp</form-login-page>
 <form-error-page>/loginerror.jsp</form-error-page>
 </form-login-config>
 </login-config>
 <servlet>
 <servlet-name>LogoutServlet</servlet-name>
 <servlet-class>
 net.ensode.glassfishbook.LogoutServlet
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>LogoutServlet</servlet-name>
 <url-pattern>/logout</url-pattern>
 </servlet-mapping>
</web-app>

In the above example, we set the value of the <realm-name> element in the web.xml
deployment descriptor to jdbc; this is the name we chose to give our realm when we
configured it through the GlassFish console.

In this example, we chose to use form-based authentication, but we could have used
basic authentication instead.

In addition to declaring that we will rely on the JDBC realm for authentication and
authorization, just as with other types of realms, we need to map the roles defined in
the web.xml deployment descriptor to security group names. This is accomplished in
the sun-web.xml deployment descriptor.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE sun-web-app PUBLIC "-//Sun Microsystems, Inc.//DTD
Application Server 9.0 Servlet 2.5//EN" "http://www.sun.com/software/
appserver/dtds/sun-web-app_2_5-0.dtd">
<sun-web-app>
 <security-role-mapping>

 <role-name>admin</role-name>

 <group-name>Admin</group-name>

Chapter 8

[283]

 </security-role-mapping>

 <security-role-mapping>

 <role-name>user</role-name>

 <group-name>Users</group-name>

 </security-role-mapping>

</sun-web-app>

The value of the <role-name> elements must match the corresponding <role-name>
elements in web.xml. The value of <group-name> must be a value in the column
specified by the Group Name Column property of the JDBC realm, as specified when it
was configured in the GlassFish web console.

Defining Custom Realms
The predefined realm types should cover the vast majority of cases. However, we
can create custom realm types if the predefined ones don't meet our needs. Doing
so involves coding custom Realm and LoginModule classes. Let's first discuss the
custom realm class.

package net.ensode.glassfishbook;

import java.util.Enumeration;
import java.util.Vector;

import com.sun.enterprise.security.auth.realm.IASRealm;
import com.sun.enterprise.security.auth.realm.
InvalidOperationException;
import com.sun.enterprise.security.auth.realm.NoSuchUserException;

public class SimpleRealm extends IASRealm

{
 @Override
 public Enumeration getGroupNames(String userName)

 throws InvalidOperationException, NoSuchUserException

 {
 Vector vector = new Vector();

 vector.add("Users");
 vector.add("Admin");

 return vector.elements();
 }

 @Override
 public String getAuthType()

 {
 return "simple";
 }

Security

[284]

 @Override
 public String getJAASContext()

 {
 return "simpleRealm";
 }

 public boolean loginUser(String userName, String password)

 {
 boolean loginSuccessful = false;

 if ("glassfish".equals(userName) &&
 "secret".equals(password))
 {
 loginSuccessful = true;
 }

 return loginSuccessful;
 }
}

Our custom realm class must extend com.sun.enterprise.security.auth.realm.
IASRealm; this class can be found inside the appserv-rt.jar file; therefore
this JAR file must be added to the CLASSPATH before our Realm can be
successfully compiled.

appserv-rt.jar can be found under [glassfish installation
directory]/glassfish/lib.

Our class must override a method called getGroupNames(). This method takes a
single String as a parameter and returns an Enumeration. The String parameter is for
the user name for the user that is attempting to log into the realm. The Enumeration
must contain a collection of Strings indicating what groups the user belongs to. In
our simple example, we basically hard-coded the groups. In a real application, these
groups would be obtained from some kind of persistent storage (database, file, etc.).

The next method our realm class must override is the getAuthType() method. This
method must return a String containing a description of the type of authentication
used by this realm.

The above two methods are declared as abstract in the IASRealm (parent) class.
Though the getJAASContext() method is not abstract, we should nevertheless
override it, because the value it returns is used to determine the type of
authentication to use from the application server's login.conf file. The return value
of this method is used to map the realm to the corresponding login module.

Chapter 8

[285]

Finally, our realm class must contain a method to authenticate the user; we are free
to call it anything we want; additionally, we can use as many parameters of any
type as we wish. Our simple example simply has the values for a single user name
and password hard-coded; again a real application would obtain valid credentials
from some kind of persistent storage. This method is meant to be called from the
corresponding login module class.

package net.ensode.glassfishbook;

import java.util.Enumeration;

import javax.security.auth.login.LoginException;

import com.sun.appserv.security.AppservPasswordLoginModule;
import com.sun.enterprise.security.auth.realm.
InvalidOperationException;
import com.sun.enterprise.security.auth.realm.NoSuchUserException;

public class SimpleLoginModule extends
 AppservPasswordLoginModule
{
 @Override
 protected void authenticateUser() throws LoginException

 {
 Enumeration userGroupsEnum = null;
 String[] userGroupsArray = null;
 SimpleRealm simpleRealm;

 if (!(_currentRealm instanceof SimpleRealm))
 {
 throw new LoginException();
 }
 else
 {
 simpleRealm = (SimpleRealm) _currentRealm;
 }

 if (simpleRealm.loginUser(_username, _password))

 {
 try
 {
 userGroupsEnum = simpleRealm.getGroupNames(_username);
 }
 catch (InvalidOperationException e)
 {
 throw new LoginException(e.getMessage());
 }
 catch (NoSuchUserException e)
 {

Security

[286]

 throw new LoginException(e.getMessage());
 }

 userGroupsArray = new String[2];
 int i = 0;

 while (userGroupsEnum.hasMoreElements())
 {
 userGroupsArray[i++] =
 ((String) userGroupsEnum.nextElement());
 }
 }
 else
 {
 throw new LoginException();
 }
 commitUserAuthentication(userGroupsArray);
 }
}

Our login module class must extend the com.sun.appserv.security.
AppservPasswordLoginModule class which is also inside the appserv-rt.jar file; it
only needs to override a single method, authenticateUser(). This method takes no
parameters and must throw a LoginException if user authentication is unsuccessful.
The _currentRealm variable is defined in the parent class; it is of type com.sun.
enterprise.security.auth.realm.Realm, the parent class of all realm classes.
This variable is initialized before the authenticateUser() method is executed. The
login module class must verify that this class is of the expected type (SimpleRealm in
our example); if it is not, a LoginException must be thrown.

Another two variables that are defined in the parent class and initialized before the
authenticateUser() method is executed are _username and _password; these
variables contain the credentials that the user entered in the login form (for form-based
authentication) or pop-up window (for basic authentication). Our example simply
passes these values to the realm class so that it can verify the user credentials.

The authenticateUser() method must call the commitUserAuthentication()
method of the parent class upon a successful authentication. This method takes
an array of String objects containing the group the user belongs to. Our example
simply invokes the getGroupNames() method defined in the realm class and adds
the elements of the Enumeration it returns to an array, then passes that array to
commitUserAuthentication().

Obviously, GlassFish is unaware of the existence of our custom realm and login
module classes. We need to add these classes to GlassFish's CLASSPATH; the easiest
way to do this is through the web console.

Chapter 8

[287]

We can add directories and JAR files to GlassFish's CLASSPATH by clicking on the
Application Server node, clicking on the JVM Settings tab, then clicking on the
Path Settings sub-tab, then entering the path of the folder or JAR file in the text area
labeled Classpath Suffix. The domain needs to be restarted for this change to
take effect.

The last step we need to follow before we can authenticate applications against our
custom realm is to add our new custom realm to the domain's login.conf file.

/* Copyright 2004 Sun Microsystems, Inc. All rights reserved. */
/* SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. */

fileRealm {
com.sun.enterprise.security.auth.login.FileLoginModule required;

Security

[288]

 };

ldapRealm {
com.sun.enterprise.security.auth.login.LDAPLoginModule required;
 };

solarisRealm {
com.sun.enterprise.security.auth.login.SolarisLoginModule required;
 };

jdbcRealm {
com.sun.enterprise.security.auth.login.JDBCLoginModule required;
 };

simpleRealm {

 net.ensode.glassfishbook.SimpleLoginModule required;

 };

The value before the opening brace must match the return value of the
getJAASContext() method defined in the realm class. It is in this file that the realm
and login module classes are linked to each other. The GlassFish domain needs to be
restarted for this change to take effect.

We are now ready to use our custom realm to authenticate users in our applications.
We need to add a new realm of the type we created via GlassFish's admin console.

Chapter 8

[289]

To create our realm, as usual we need to give it a name. Instead of selecting a class
name from the dropdown, we need to type it into the text field. Our custom realm
didn't have any properties, therefore we don't have to add any in this example. If it
did, they would be added by clicking on the Add Property button and entering the
property name and corresponding value. Our realm would then get the properties
by overriding the init() method from its parent class. This method has the
following signature:

protected void init(Properties arg0) throws

 BadRealmException, NoSuchRealmException

The instance of java.util.Properties that it takes as a parameter would be
pre-populated with the properties entered in the page shown in the previous
screenshot (our custom realm doesn't have any properties, but for those that do,
properties are entered in this page).

Once we have added the pertinent information for our new custom realm, we can
use it just as we use any of the predefined realms. Applications need to specify
its name as the value of the <realm-name> element of the application's web.
xml deployment descriptor. Nothing out of the ordinary needs to be done at the
application level.

Summary
In this chapter, we covered how to use GlassFish's default realms to authenticate
our web applications. We covered the file realm, which stores user information in
a flat file, and the certificate realm, which requires client-side certificates for user
authentication.

Additionally, we covered how to create additional realms that behave just like the
default realms by using the realm classes included with GlassFish.

We also covered how to use additional realm classes included in GlassFish to
create realms that authenticate against an LDAP Database, or against a relational
database, and how to create realms that "piggyback" into a Solaris server's
authentication mechanism.

Finally, we covered how to create custom realm classes for cases where the included
ones do not meet our needs.

Enterprise JavaBeans
Enterprise JavaBeans are server-side components that encapsulate application
business logic. Enterprise JavaBeans simplify application development by
automatically taking care of transaction management and security. There are two
types of Enterprise JavaBeans: Session Beans, which perform business logic; and
Message-Driven Beans, which act as a message listener.

Readers familiar with previous versions of J2EE will notice that Entity Beans
were not mentioned in the above paragraph. In Java EE 5, Entity Beans have been
deprecated in favor of the Java Persistence API (JPA). Entity Beans are still supported
for backwards compatibility; however, the preferred way of doing Object Relational
Mapping with Java EE 5 is through JPA. Refer to Chapter 4 for a detailed discussion
on JPA.

The following topics will be covered in this chapter:

Session Beans
A simple session bean
A more realistic example
Using a session bean to implement the DAO design pattern

Message-driven beans
Transactions in Enterprise Java beans

Container-managed transactions
Bean-managed transactions

Enterprise JavaBeans life cycles
Stateful session bean life cycle
Stateless session bean life cycle
Message-driven bean life cycle

EJB timer service
EJB security

•
°
°
°

•
•

°
°

•
°
°
°

•
•

Enterprise JavaBeans

[292]

Session Beans
As we previously mentioned, session beans typically encapsulate business logic. In
Java EE 5, only two artifacts need to be created in order to create a session bean: the
bean itself, and a business interface. These artifacts need to be decorated with the
proper annotations to let the EJB container know they are session beans.

Previous versions of J2EE required application developers to create several artifacts
in order to create a session bean. These artifacts included the bean itself, a local or
remote interface (or both), a local home or a remote home interface (or both) and a
deployment descriptor. As we shall see in this chapter, EJB development has been
greatly simplified in Java EE 5.

Simple Session Bean
The following example illustrates a very simple session bean:

package net.ensode.glassfishbook;
import javax.ejb.Stateless;

@Stateless
public class SimpleSessionBean implements SimpleSession
{
 private String message =
 "If you don't see this, it didn't work!";
 public String getMessage()
 {
 return message;
 }
}

The @Stateless annotation lets the EJB container know that this class is a stateless
session bean. There are two types of session beans, stateless and stateful. Before we
explain the difference between these two types of session beans, we need to clarify
how an instance of an EJB is provided to an EJB client application.

When EJBs (both session beans and message-driven beans) are deployed, the EJB
container creates a series of instances of each EJB. This is what is typically referred to
as the EJB pool. When an EJB client application obtains an instance of an EJB, one of
the instances in the pool is provided to this client application.

The difference between stateful and stateless session beans is that stateful session
beans maintain conversational state with the client, where stateless session beans do
not. In simple terms, what this means is that when an EJB client application obtains
an instance of a stateful session bean, the same instance of the EJB is provided for
each method invocation, therefore, it is safe to modify any instance variables on a
stateful session bean, as they will retain their value for the next method call.

Chapter 9

[293]

The EJB container may provide any instance of an EJB in the pool when an EJB client
application requests an instance of a stateless session bean. As we are not guaranteed
the same instance for every method call, values set to any instance variables in a
stateless session bean may be "lost" (they are not really lost; the modification is in
another instance of the EJB in the pool).

Other than being decorated with the @Stateless annotation, there is nothing special
about this class. Notice that it implements an interface called SimpleSession. This
interface is the bean's business interface. The SimpleSession interface is
shown next:

package net.ensode.glassfishbook;

import javax.ejb.Remote;

@Remote
public interface SimpleSession
{
 public String getMessage();
}

The only peculiar thing about this interface is that it is decorated with the @Remote
annotation. This annotation indicates that this is a remote business interface. What
this means is that the interface may be in a different JVM than the client application
invoking it. Remote business interfaces may even be invoked across the network.

Business interfaces may also be decorated with the @Local interface. This annotation
indicates that the business interface is a local business interface. Local business
interface implementations must be in the same JVM as the client application
invoking their methods.

As remote business interfaces can be invoked either from the same JVM or from a
different JVM than the client application, at first glance, we might be tempted to
make all of our business interfaces remote. Before doing so, we must be aware of
the fact that the flexibility provided by remote business interfaces comes with a
performance penalty, because method invocations are made under the assumption
that they will be made across the network. As a matter of fact, most typical Java EE
application consist of web applications acting as client applications for EJBs; in this
case, the client application and the EJB are running on the same JVM, therefore, local
interfaces are used a lot more frequently than remote business interfaces.

Once we have compiled the session bean and its corresponding business interface,
we need to place them in a JAR file and deploy them. Just as with WAR files, the
easiest way to deploy an EJB JAR file is to copy it to [glassfish installation
directory]/glassfish/domains/domain1/autodeploy.

Enterprise JavaBeans

[294]

Now that we have seen the session bean and its corresponding business interface,
let's take a look at a client sample application:

package net.ensode.glassfishbook;

import javax.ejb.EJB;

public class SessionBeanClient
{

 @EJB
 private static SimpleSession simpleSession;

 private void invokeSessionBeanMethods()
 {
 System.out.println(simpleSession.getMessage());

 System.out.println("\nSimpleSession is of type: "
 + simpleSession.getClass().getName());
 }

 public static void main(String[] args)
 {
 new SessionBeanClient().invokeSessionBeanMethods();
 }

}

The above code simply declares an instance variable of type net.ensode.
SimpleSession, which is the business interface for our session bean. The instance
variable is decorated with the @EJB annotation; this annotation lets the EJB container
know that this variable is a business interface for a session bean. The EJB container
then injects an implementation of the business interface for the client code to use.

As our client is a stand-alone application (as opposed to a Java EE artifact such as a
WAR file) in order for it to be able to access code deployed in the server, it must be
placed in a JAR file and executed through the appclient utility. This utility can be
found at [glassfish installation directory]/glassfish/bin/. Assuming this
path is in the PATH environment variable, and assuming we placed our client code
in a JAR file called simplesessionbeanclient.jar, we
would execute the above client code by typing the following command in the
command line:

appclient -client simplesessionbeanclient.jar

Executing the above command results in the following console output:

If you don't see this, it didn't work!

SimpleSession is of type: net.ensode.glassfishbook._SimpleSession_Wrapper

which is the output of the SessionBeanClient class.

Chapter 9

[295]

The first line of output is simply the return value of the getMessage() method
we implemented in the session bean. The second line of output displays the fully
qualified class name of the class implementing the business interface. Notice that the
class name is not the fully qualified name of the session bean we wrote; instead, what
is actually provided is an implementation of the business interface created behind
the scenes by the EJB container.

A More Realistic Example
In the previous section, we saw a very simple, "Hello world" type of example. In this
section, we will show a more realistic example. Session beans are frequently used
as Data Access Objects (DAOs). Sometimes, they are used as a wrapper for JDBC
calls, other times they are used to wrap calls to obtain or modify JPA entities. In this
section, we will take the latter approach.

The following example illustrates how to implement the DAO design pattern in a
session bean. Before looking at the bean implementation, let's look at the business
interface corresponding to it:

package net.ensode.glassfishbook;

import javax.ejb.Remote;

@Remote
public interface CustomerDao
{
 public void saveCustomer(Customer customer);

 public Customer getCustomer(Long customerId);

 public void deleteCustomer(Customer customer);
}

As we can see, the above is a remote interface implementing three methods; the
saveCustomer() method saves customer data to the database, the getCustomer()
method obtains data for a customer from the database, and the deleteCustomer()
method deletes customer data from the database. All of these methods take or return
an instance of the Customer entity we developed in Chapter 4 as a parameter.

Let's now take a look at the session bean implementing the above business interface.
As we are about to see, there are some differences between the way JPA code is
implemented in a session bean versus in a plain old Java object.

package net.ensode.glassfishbook;

import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

Enterprise JavaBeans

[296]

import javax.annotation.Resource;
import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.sql.DataSource;

@Stateless
public class CustomerDaoBean implements CustomerDao
{
 @PersistenceContext
 private EntityManager entityManager;

 @Resource(name = "jdbc/__CustomerDBPool")
 private DataSource dataSource;

 public void saveCustomer(Customer customer)
 {
 if (customer.getCustomerId() == null)
 {
 saveNewCustomer(customer);
 }
 else
 {
 updateCustomer(customer);
 }
 }

 private void saveNewCustomer(Customer customer)
 {
 customer.setCustomerId(getNewCustomerId());
 entityManager.persist(customer);
 }

 private void updateCustomer(Customer customer)
 {
 entityManager.merge(customer);
 }

 public Customer getCustomer(Long customerId)
 {
 Customer customer;

 customer = entityManager.find(Customer.class, customerId);

 return customer;
 }

 public void deleteCustomer(Customer customer)
 {
 entityManager.remove(customer);
 }

Chapter 9

[297]

 private Long getNewCustomerId()
 {
 Connection connection;
 Long newCustomerId = null;
 try
 {
 connection = dataSource.getConnection();
 PreparedStatement preparedStatement = connection
 .prepareStatement(
 "select max(customer_id)+1 as new_customer_id "
 + "from customers");

 ResultSet resultSet = preparedStatement.executeQuery();

 if (resultSet != null && resultSet.next())
 {
 newCustomerId = resultSet.getLong("new_customer_id");
 }

 connection.close();

 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }

 return newCustomerId;
 }
}

The first difference we should notice is that an instance of javax.persistence.
EntityManager is directly injected into the session bean. In previous JPA examples,
we had to inject an instance of javax.persistence.EntityManagerFactory,
then use the injected EntityManagerFactory instance to obtain an instance of
EntityManager.

The reason we had to do this was that our previous examples were not thread safe.
What this means is that potentially the same code could be executed concurrently
by more than one user. As EntityManager is not designed to be used concurrently
by more than one thread, we used an EntityManagerFactory instance to provide
each thread with its own instance of EntityManager. Since the EJB container assigns
a session bean to a single client at time, session beans are inherently thread safe,
therefore, we can inject an instance of EntityManager directly into a session bean.

Enterprise JavaBeans

[298]

The next difference between this session bean and previous JPA examples is that in
previous examples, JPA calls were wrapped between calls to UserTransaction.
begin() and UserTransaction.commit(). The reason we had to do this is
because JPA calls are required to be in wrapped in a transaction, if they are not in
a transaction, most JPA calls will throw a TransactionRequiredException. The
reason we don't have to explicitly wrap JPA calls in a transaction as in previous
examples is because session bean methods are implicitly transactional; there is
nothing we need to do to make them that way. This default behavior is what is
known as Container-Managed Transactions. Container-Managed Transactions are
discussed in detail later in this chapter.

As mentioned in Chapter 4, when a JPA entity is retrieved in one
transaction and updated in a different transaction, the EntityManager.
merge() method needs to be invoked to update the data in the database.
Invoking EntityManager.persist() in this case will result in a
"Cannot persist detached object" exception.

Invoking Session Beans from Web
Applications
Frequently, Java EE applications consist of web applications acting as clients for
EJBs. The most common way of deploying a Java EE application that consists of both
a web application and one or more session beans is to package both the WAR file for
the web application and the EJB JAR files into an EAR (Enterprise ARchive) file.

In this section, we will modify the example we saw in the section titled Integrating
JSF and JPA from Chapter 6 so that the web application acts as a client to the DAO
session bean we saw in the previous section. In order to make this application act
as an EJB client, we will modify the CustomerController managed bean so that it
delegates the logic to save a new customer to the database to the CustomerDaoBean
session bean we developed in the previous section.

package net.ensode.glassfishbook.jsfjpa;

import javax.ejb.EJB;

import net.ensode.glassfishbook.Customer;
import net.ensode.glassfishbook.CustomerDao;

public class CustomerController
{
 @EJB
 CustomerDao customerDao;

 private Customer customer;

Chapter 9

[299]

 public String saveCustomer()
 {
 String returnValue = "success";
 try
 {

 customerDao.saveCustomer(customer);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 returnValue = "failure";
 }

 return returnValue;
 }

 public Customer getCustomer()
 {
 return customer;
 }

 public void setCustomer(Customer customer)
 {
 this.customer = customer;
 }
}

As you can see, all we had to do was to declare an instance of the CustomerDao
business interface, and decorate it with the @EJB annotation so that an instance of the
corresponding EJB is injected, and replace the code to save data to the database with
an invocation to the saveCustomer() method, which is defined in the CustomerDao
business interface.

Now that we have modified our web application to be a client for our session bean,
we need to package it in a WAR file. Then we need to package the WAR file, along
with the EJB JAR file containing the session bean, in an EAR file.

An EAR file is a compressed ZIP file containing WAR files, EJB JAR files, and any
additional libraries that either the web application or the EJB might depend on. An
EAR file also contains an application.xml deployment descriptor. This deployment
descriptor must be placed in a META-INF directory inside the EAR file.

Enterprise JavaBeans

[300]

The structure of our EAR file is shown in the following screenshot.

The application.xml deployment descriptor declares all the Java EE modules that
are included in the EAR file.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE application PUBLIC
 "-//Sun Microsystems, Inc.//DTD J2EE Application 1.3//EN"
 "http://java.sun.com/dtd/application_1_3.dtd">
<application>
 <display-name>savecustomer_ear</display-name>
 <module>
 <web>
 <web-uri>daosessionbeanwebclient.war</web-uri>
 <context-root>/daosessionbeanwebclient</context-root>
 </web>
 </module>
 <module>
 <ejb>daosessionbean.jar</ejb>
 </module>
</application>

Each module must be nested inside a <module> element, followed by either an <ejb>
element for EJB modules, a <web> element for web modules, or a <java> element for
EJB clients that are not web applications.

<ejb> and <java> elements specify the name of the JAR file to be deployed. <web>
elements contain a required <web-uri> element indicating the name of the WAR file
to be deployed, and an optional <context-root> element used to specify the context
root of the web application. If no <context-root> element is present, then the base
name of the WAR file is used as its context root.

Chapter 9

[301]

An EAR file can be created by using a ZIP tool (WinZip, 7-Zip, etc.) to create a ZIP
file with its contents, or, more likely, an IDE or build tool such as Eclipse, NetBeans,
ANT or Maven can be used to automate its creation. An EAR file must end with a
.ear extension. Once the EAR file is created, the easiest way to deploy it is to copy
it into the autodeploy directory under [glassfish installation directory]/
glassfish/domains/domain1.

Message-Driven Beans
The purpose of a message-driven bean is to consume messages from a JMS Queue
or a JMS topic, depending on the messaging domain used (refer to Chapter 7). A
message-driven bean must be decorated with the @MessageDriven annotation.
The mappedName attribute of this annotation must contain the JNDI name of the
JMS message queue or JMS message topic from which the bean will be consuming
messages. The following example illustrates a simple message-driven bean:

package net.ensode.glassfishbook;

import javax.ejb.MessageDriven;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.TextMessage;

@MessageDriven(mappedName = "jms/GlassFishBookQueue")
public class ExampleMessageDrivenBean implements MessageListener
{
 public void onMessage(Message message)
 {
 TextMessage textMessage = (TextMessage) message;
 try
 {
 System.out.print("Received the following message: ");
 System.out.println(textMessage.getText());
 System.out.println();
 }
 catch (JMSException e)
 {
 e.printStackTrace();
 }
 }
}

Enterprise JavaBeans

[302]

As we can see, this class is nearly identical to the ExampleMessageListener class we
saw in the previous chapter; the only differences are the class name and the fact that
this example is decorated with the @MessageDriven interface. It is recommended,
but not required for message-driven beans to implement the javax.jms.
MessageListener interface, however; message-driven beans must have a method
called onMessage() whose signature is identical to this example.

Client applications never invoke a message-driven bean's methods directly, instead
they put messages in the message queue or topic, then the bean consumes those
messages and acts as appropriate. The preceding example simply prints the message
to standard output; as message-driven beans execute inside an EJB container,
standard output gets redirected to a log. To see the messages in GlassFish's server
log, open the [GlassFish installation directory]/glassfish/domains/
domain1/logs/server.log file.

Transactions in Enterprise Java Beans
As we mentioned earlier in this chapter, by default, any EJB methods are
automatically wrapped in a transaction. This default behavior is known as
Container-Managed Transactions, because transactions are managed by the
EJB container. Application developers may also choose to manage transactions
themselves; this can be accomplished by using Bean-Managed Transactions. Both of
these approaches are discussed in the following sections.

Container-Managed Transactions
Because EJB methods are transactional by default, we run into an interesting
dilemma when a session bean is invoked from client code that is already a
transaction. How should the EJB container behave? Should it suspend the client
transaction, execute its method in a new transaction, then resume the client
transaction? Should it not create a new transaction and execute its method as part of
the client transaction? Should it throw an exception?

By default, if an EJB method is invoked by client code that is already in a transaction,
the EJB container will simply execute the session bean method as part of the client
transaction. If this is not the behavior we need, we can change it by decorating the
method with the @TransactionAttribute annotation. This annotation has a value
attribute that determines how the EJB container will behave when the session bean
method is invoked within an existing transaction and when it is invoked outside any
transactions. The value of the value attribute is typically a constant defined in the
javax.ejb.TransactionAttributeType enum. The following table lists the possible
values for the @TransactionAttribute annotation:

Chapter 9

[303]

@TransactionAttribute value Description
TransactionAttributeType.MANDATORY Forces the method to be invoked as part of

a client transaction. If the method is called
outside any transactions, it will throw a
TransactionRequiredException.

TransactionAttributeType.NEVER The method is never executed in a
transaction. If the method is invoked as
part of a client transaction, it will throw
a RemoteException. No transaction is
created if the method is not invoked inside a
client transaction.

TransactionAttributeType.NOT_SUPPORTED If the method is invoked as part of a
client transaction, the client transaction
is suspended; the method is executed
outside any transaction. After the method
completes, the client transaction is resumed.
No transaction is created if the method is
not invoked inside a client transaction.

TransactionAttributeType.REQUIRED If the method is invoked as part of a client
transaction, the method is executed as part
of that transaction. If the method is invoked
outside any transaction, a new transaction
is created for the method. This is the default
behavior.

TransactionAttributeType.REQUIRES_NEW If the method is invoked as part of a client
transaction, that transaction is suspended,
and a new transaction is created for the
method. Once the method completes, the
client transaction is resumed. If the method
is called outside any transactions, a new
transaction is created for the method.

TransactionAttributeType.SUPPORTS If the method is invoked as part of a client
transaction, it is executed as part of that
transaction. If the method is invoked outside
a transaction, no new transaction is created
for the method.

Enterprise JavaBeans

[304]

Although the default transaction attribute is reasonable in most cases, it is good
to be able to override this default, if necessary. For example, transactions have a
performance impact, therefore being able to turn off transactions for a method that
does not need them is beneficial. For a case like this, we would decorate our method
as illustrated in the following code snippet:

@TransactionAttribute(value=TransactionAttributeType.NEVER)
public void doitAsFastAsPossible()
{
 //performance critical code goes here.
}

Other transaction attribute types can be declared by annotating the methods with the
corresponding constant in the TransactionAttributeType enum.

If we wish to override the default transaction attribute consistently across all
methods in a session bean, we can decorate the session bean class with the
@TransactionAttribute annotation. The value of its value attribute will be applied
to every method in the session bean.

Container-managed transactions are automatically rolled back whenever an
exception is thrown inside an EJB method. Additionally, we can programmatically
roll back a container-managed transaction by invoking the setRollbackOnly()
method on an instance of javax.ejb.EJBContext corresponding to the session bean
in question. The following example is a new version of the session bean we saw
earlier in this chapter, modified to roll back transactions if necessary.

package net.ensode.glassfishbook;

import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

import javax.annotation.Resource;
import javax.ejb.EJBContext;
import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.sql.DataSource;

@Stateless
public class CustomerDaoRollbackBean implements CustomerDaoRollback
{
 @Resource
 private EJBContext ejbContext;

 @PersistenceContext

Chapter 9

[305]

 private EntityManager entityManager;

 @Resource(name = "jdbc/__CustomerDBPool")
 private DataSource dataSource;

 public void saveNewCustomer(Customer customer)
 {
 if (customer == null || customer.getCustomerId() != null)
 {
 ejbContext.setRollbackOnly();
 }
 else
 {
 customer.setCustomerId(getNewCustomerId());
 entityManager.persist(customer);
 }
 }

 public void updateCustomer(Customer customer)
 {
 if (customer == null || customer.getCustomerId() == null)
 {
 ejbContext.setRollbackOnly();
 }
 else
 {
 entityManager.merge(customer);
 }
 }
//Additional method omitted for brevity.

}

In this version of the DAO session bean, we deleted the saveCustomer() method
and made the saveNewCustomer() and updateCustomer() methods public. Each
of these methods now checks to see if the customerId field is set correctly for the
operation we are trying to perform (null for inserts and not null for updates). It
also checks to make sure the object to be persisted is not null. If any of the checks
results in invalid data, the method simply rolls back the transaction by invoking the
setRollBackOnly() method on the injected instance of EJBContext and does not
update the database.

Enterprise JavaBeans

[306]

Bean-Managed Transactions
As we have seen, container-managed transactions make it ridiculously easy to write
code that is wrapped in a transaction; after all, there is nothing special that we need
to do to make them that way. As a matter of fact, some developers are sometimes not
even aware that they are writing code that will be transactional in nature when they
develop session beans. Container-managed transactions cover most of the typical
cases that we will encounter; however, they do have a limitation: each method can
be wrapped in a single transaction or with no transaction. With container-managed
transactions, it is not possible to implement a method that generates more than one
transaction, but this can be accomplished by using Bean-Managed Transactions.

package net.ensode.glassfishbook;

import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.util.List;

import javax.annotation.Resource;
import javax.ejb.Stateless;
import javax.ejb.TransactionManagement;
import javax.ejb.TransactionManagementType;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.sql.DataSource;
import javax.transaction.UserTransaction;

@Stateless

@TransactionManagement(value = TransactionManagementType.BEAN)
public class CustomerDaoBmtBean implements CustomerDaoBmt
{
 @Resource
 private UserTransaction userTransaction;

 @PersistenceContext
 private EntityManager entityManager;

 @Resource(name = "jdbc/__CustomerDBPool")
 private DataSource dataSource;

 public void saveMultipleNewCustomers(
 List<Customer> customerList)
 {
 for (Customer customer : customerList)
 {
 try
 {

 userTransaction.begin();
 customer.setCustomerId(getNewCustomerId());

Chapter 9

[307]

 entityManager.persist(customer);

 userTransaction.commit();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
 }

 private Long getNewCustomerId()
 {
 Connection connection;
 Long newCustomerId = null;
 try
 {
 connection = dataSource.getConnection();
 PreparedStatement preparedStatement =
 connection.prepareStatement("select " +
 "max(customer_id)+1 as new_customer_id " +
 "from customers");

 ResultSet resultSet = preparedStatement.executeQuery();

 if (resultSet != null && resultSet.next())
 {
 newCustomerId = resultSet.getLong("new_customer_id");
 }

 connection.close();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }

 return newCustomerId;
 }
}

In this example, we implemented a method named saveMultipleNewCustomers().
This method takes an ArrayList of customers as its sole parameter. The intention of
this method is to save as many elements in the ArrayList as possible. An exception
saving one of the entities should not stop the method from attempting to save
the remaining elements. This behavior is not possible using container-managed
transactions, because an exception thrown when saving one of the entities would
roll back the whole transaction. The only way to achieve this behavior is through
bean-managed transactions.

Enterprise JavaBeans

[308]

As can be seen in the example, we declare that the session bean uses bean-managed
transactions by decorating the class with the @TransactionManagement annotation,
and using TransactionManagementType.BEAN as the value for its value attribute
(The only other valid value for this attribute is TransactionManagementType.
CONTAINER, but because this is the default value, it is not necessary to specify it.)

To be able to programmatically control transactions, we inject an instance of javax.
transaction.UserTransaction, which is then used in the for loop inside the
getNewCustomerId() method to begin and commit a transaction in each iteration of
the loop.

If we need to roll back a bean-managed transaction, we can do it by
simply calling the rollback() method on the appropriate instance of
javax.transaction.UserTransaction.

Before moving on, it is worth noting that even though all the examples in this section
were session beans, the concepts explained apply to message-driven beans as well.

Enterprise JavaBean Life Cycles
Enterprise JavaBeans go through different states in their life cycle. Each type of
EJB has different states. States specific to each type of EJB are discussed in the
next sections.

Stateful Session Bean Life Cycle
Readers experienced with previous versions of J2EE may remember that in previous
versions of the specification, session beans were required to implement the javax.
ejb.SessionBean interface. This interface provides methods to be executed at
certain points in the session bean's life cycle. Methods provided by the SessionBean
interface include:

ejbActivate()

ejbPassivate()

ejbRemove()

setSessionContext(SessionContext ctx)

•

•

•

•

Chapter 9

[309]

The first three methods are meant to be executed at certain points in the bean's life
cycle. In most cases, there is nothing to do in the implementation of these methods.
This fact resulted in the vast majority of session beans implementing empty versions
of these methods. Thankfully, in Java EE 5, it is no longer necessary to implement
the SessionBean interface; however, if necessary, we can still write methods that

will get executed at certain points in the bean's life cycle. We can achieve this by
decorating methods with specific annotations.

Before explaining the annotations available to implement life-cycle methods, a
brief explanation of the session bean life cycle is in order. The life cycle of a stateful
session bean is different from the life cycle of a stateless session bean.

A stateful session bean life cycle contains three states: Does Not Exist, Ready, and
Passive, as shown in the following screenshot.

Does Not Exist

Ready

Passive

Before a stateful session bean is deployed, it is in the Does Not Exist state. Upon a
successful deployment, the EJB container does any required dependency injection on
the bean and it goes into the Ready state. At this point, the bean is ready to have its
methods called by a client application.

When a stateful session bean is in the Ready state, the EJB container may decide to
passivate it, that is, to move it from main memory to secondary storage; when this
happens the bean goes into Passive state.

Enterprise JavaBeans

[310]

If an instance of a stateful session bean hasn't been accessed for a period of time,
the EJB container will set the bean to the Does Not Exist state. By default, a stateful
session bean will be sent to the Does Not Exist state after 90 minutes of inactivity.
This default can be changed by going to the GlassFish administration console,
expanding the Configuration node in the tree at the left-hand side, clicking on
the EJB Container node, then scrolling down towards the bottom of the page and
modifying the value of the Removal Timeout text field, then clicking on the Save
button at the bottom-right of the main page.

Chapter 9

[311]

However, this technique sets the timeout value for all stateful session beans. If we
need to modify the timeout value for a specific session bean, we need to include
a sun-ejb-jar.xml deployment descriptor in the JAR file containing the session
bean. In this deployment descriptor, we can set the timeout value as the value of the
<removal-timeout-in-seconds> element.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE sun-ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD
Application Server 9.0 EJB 3.0//EN" "http://www.sun.com/software/
appserver/dtds/sun-ejb-jar_3_0-0.dtd">
<sun-ejb-jar>
 <enterprise-beans>
 �����<ejb>

 <ejb-name>MyStatefulSessionBean</ejb-name>
 <bean-cache>

 <removal-timeout-in-seconds>
 600
 </removal-timeout-in-seconds>
 </bean-cache>
 </ejb>
 </enterprise-beans>
</sun-ejb-jar>

Even though we are not required to create an ejb-jar.xml file for our session beans
anymore (this used to be the case in previous versions of the J2EE specification), we
can still write one if we wish to do so. The <ejb-name> element in the sun-ejb-jar.
xml deployment descriptor must match the value of the element of the same name in
ejb-jar.xml. If we choose not to create an ejb-jar.xml file, then this value must
match the name of the EJB class. The timeout value for the stateful session bean must
be the value of the <removal-timeout-in-seconds> element; as the name of the
element suggests, the unit of time to use is seconds. In the above example, we set the
timeout value to 600 seconds, or 10 minutes.

Any of the methods in a stateful session bean decorated with the @PostActivate
annotation will be invoked just after the stateful session bean has been activated.
This is equivalent to implementing the ejbActivate() method in previous versions
of J2EE. Similarly, any method decorated with the @PrePassivate annotation will
be invoked just before the stateful session bean is passivated. This is equivalent to
implementing the ejbPassivate() method in previous versions of J2EE.

Enterprise JavaBeans

[312]

When a stateful session bean that is in the Ready state times out and is sent to the
Does not Exist state, any method decorated with the @PreDestroy annotation
is executed. If the session bean is in the Passive state and it times out, methods
decorated with the @PreDestroy annotation are not executed. Additionally, if a
client of the stateful session bean executes any method decorated with the @Remove
annotation, any methods decorated with the @PreDestroy annotation are executed
and the bean is marked for garbage collection. Decorating a method with the
@Remove annotation is equivalent to implementing the ejbRemove() method in
previous versions of the J2EE specification.

The @PostActivate, @PrePassivate, and @Remove annotations are valid only for
stateful session beans. The @PreDestroy and @PostConstruct annotations are valid
for stateful session beans, stateless session beans, and message-driven beans.

Stateless Session Bean Life Cycle
A stateless session bean life cycle, as shown in the following screenshot, contains
only the Does Not Exist and Ready states.

Does Not Exist

Ready

Stateless session beans are never passivated. A stateless session bean's methods can
be decorated with the @PostConstruct and the @PreDestroy annotations. Just as in
stateful session beans, any methods decorated with the @PostConstruct annotation
will be executed when the stateless session bean goes from the Does Not Exist to the
Ready state, and any methods decorated with the @PreDestroy annotation will be
executed when a stateless session bean goes from the Ready state to the Does Not
Exist state. Since stateless session beans are never passivated, therefore any
@PrePassivate and @PostActivate annotations in a stateless session bean are
simply ignored by the EJB container.

Chapter 9

[313]

Message-Driven Bean Life Cycle
Just like stateless session beans, message-driven beans, as shown in the following
screenshot, contain only the Does Not Exist and Ready states.

Does Not Exist

Ready

The above image is exactly the same as the previous one. Message-driven beans have
the same life cycle as stateless session beans.

A message-driven bean can have methods decorated with the @PostConstruct
and @PreDestroy methods. Methods decorated with the @PostConstruct are
executed just before the bean goes to the Ready state. Methods decorated with the
@PreDestroy annotation are executed just before the bean goes to the Does Not
Exist state.

EJB Timer Service
Stateless session beans and message-driven beans can have a method that is executed
periodically at regular intervals of time. This can be accomplished by using the EJB
Timer Service. The following example illustrates how to take advantage of
this service.

package net.ensode.glassfishbook;

import java.io.Serializable;
import java.util.Collection;
import java.util.Date;
import java.util.logging.Logger;

import javax.annotation.Resource;
import javax.ejb.EJBContext;
import javax.ejb.Stateless;
import javax.ejb.Timeout;
import javax.ejb.Timer;
import javax.ejb.TimerService;

Enterprise JavaBeans

[314]

@Stateless
public class EjbTimerExampleBean implements EjbTimerExample
{
 private static Logger logger = Logger.getLogger(EjbTimerExampleBean.
 class.getName());
 @Resource
 TimerService timerService;

 public void startTimer(Serializable info)
 {
 Timer timer = timerService.createTimer
 (new Date(), 5000, info);
 }

 public void stopTimer(Serializable info)
 {
 Timer timer;
 Collection timers = timerService.getTimers();

 for (Object object : timers)
 {
 timer = ((Timer) object);

 if (timer.getInfo().equals(info))
 �{
 timer.cancel();
 break;
 }
 }
 }

 @Timeout
 public void logMessage(Timer timer)
 �{
 logger.info("This message was triggered by :" +
 ������������������������ timer.getInfo() + " at "
 + System.currentTimeMillis());
 �}
}

In the above example, we inject an implementation of the javax.ejb.TimerService
interface by decorating an instance variable of this type with the @Resource
annotation. We can then create a timer by invoking the createTimer() method of
this TimerService instance.

There are several overloaded versions of the createTimer() method; the one
we chose to use takes an instance of java.util.Date as its first parameter. This
parameter is used to indicate the first time the timer should expire ("go off"). In the

Chapter 9

[315]

example, we chose to use a brand-new instance of the Date class, which in effect
makes the timer expire immediately. The second parameter of the createTimer()
method is the amount of time to wait, in milliseconds, before the timer expires again.
In this example, the timer will expire every five seconds. The third parameter of the
createTimer() method can be an instance of any class implementing the java.
io.Serializable interface. As a single EJB can have several timers executing
concurrently, this third parameter is used to uniquely identify each of the timers. If
we don't need to identify the timers, null can be passed as a value for this parameter.

The EJB method invoking TimerService.createTimer() must
be called from an EJB client. Placing this call in an EJB method
decorated with the @PostConstruct annotation to start the timer
automatically when the bean is placed in Ready state will result in an
IllegalStateException being thrown.

We can stop a timer by invoking its cancel() method. There is no way to directly
obtain a single timer associated with an EJB; what we need to do is invoke the
getTimers() method on the instance of TimerService that is linked to the EJB. This
method will return a Collection containing all the timers associated with the EJB.
We can then iterate through the collection and cancel the correct one by invoking its
getInfo() method. This method will return the Serializable object we passed as a
parameter to the createTimer() method.

Finally, any EJB method decorated with the @Timeout annotation will be executed
when a timer expires. Methods decorated with this annotation must return void
and take a single parameter of type javax.ejb.Timer. In our example, the method
simply writes a message to the server log.

The following class is a stand-alone client for this EJB.

package net.ensode.glassfishbook;

import javax.ejb.EJB;

public class Client
{
 @EJB
 private static EjbTimerExample ejbTimerExample;

 public static void main(String[] args)
 �{
 try
 {
 System.out.println("Starting timer 1...");

 ejbTimerExample.startTimer("Timer 1");
 �� System.out.println("Sleeping for 2 seconds...");
 Thread.sleep(2000);

Enterprise JavaBeans

[316]

 System.out.println("Starting timer 2...");

 ejbTimerExample.startTimer("Timer 2");
 System.out.println("Sleeping for 30 seconds...");
 Thread.sleep(30000);
 �� System.out.println("Stopping timer 1...");

 ejbTimerExample.stopTimer("Timer 1");
 System.out.println("Stopping timer 2...");

 ejbTimerExample.stopTimer("Timer 2");
 ����������������������������System.out.println("Done.");
 }
 catch (InterruptedException e)
 {
 e.printStackTrace();
 }
 }
}

The example simply starts a timer, waits for a couple of seconds, then starts a second
timer. It then sleeps for 30 seconds and then stops both timers. After deploying the
EJB and executing the client, we should see some entries like this in the server log:

[#|2007-05-05T20:41:39.518-0400|INFO|sun-appserver9.1|net.ensode.
glassfishbook.EjbTimerExampleBean|_ThreadID=22;_ThreadName=p:
thread-pool-1; w: 16;|This message was triggered by :Timer 1 at
1178412099518|#]

[#|2007-05-05T20:41:41.536-0400|INFO|sun-appserver9.1|net.ensode.
glassfishbook.EjbTimerExampleBean|_ThreadID=22;_ThreadName=p:
thread-pool-1; w: 16;|This message was triggered by :Timer 2 at
1178412101536|#]

[#|2007-05-05T20:41:46.537-0400|INFO|sun-appserver9.1|net.ensode.
glassfishbook.EjbTimerExampleBean|_ThreadID=22;_ThreadName=p:
thread-pool-1; w: 16;|This message was triggered by :Timer 1 at
1178412106537|#]

[#|2007-05-05T20:41:48.556-0400|INFO|sun-appserver9.1|net.ensode.
glassfishbook.EjbTimerExampleBean|_ThreadID=22;_ThreadName=p:
thread-pool-1; w: 16;|This message was triggered by :Timer 2 at
1178412108556|#]

These entries are created each time one of the timer expires.

EJB Security
Enterprise JavaBeans allow us to declaratively decide which users can access their
methods. For example, some methods might only be available to users in certain
roles. A typical scenario is that only users with a role of administrator can add,
delete, or modify other users in the system.

Chapter 9

[317]

The following example is a slightly modified version of the DAO session bean we
saw earlier in this chapter. In this version, some methods that were previously
private were made public. Additionally, the session bean was modified to allow only
users in certain roles to access its methods.

package net.ensode.glassfishbook;

import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

import javax.annotation.Resource;
import javax.annotation.security.RolesAllowed;
import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.sql.DataSource;

@Stateless

@RolesAllowed("appadmin")
public class CustomerDaoBean implements CustomerDao
{
 @PersistenceContext
 private EntityManager entityManager;

 @Resource(name = "jdbc/__CustomerDBPool")
 private DataSource dataSource;

 public void saveCustomer(Customer customer)
 {
 if (customer.getCustomerId() == null)
 {
 saveNewCustomer(customer);
 }
 else
 {
 updateCustomer(customer);
 }
 }

 public Long saveNewCustomer(Customer customer)
 {
 customer.setCustomerId(getNewCustomerId());
 entityManager.persist(customer);

 return customer.getCustomerId();
 }

 public void updateCustomer(Customer customer)
 {

Enterprise JavaBeans

[318]

 entityManager.merge(customer);
 }

 @RolesAllowed(
 { "appuser", "appadmin" })
 public Customer getCustomer(Long customerId)
 {
 Customer customer;

 customer = entityManager.find(Customer.class, customerId);

 return customer;
 }

 public void deleteCustomer(Customer customer)
 {
 entityManager.remove(customer);
 }

 private Long getNewCustomerId()
 {
 Connection connection;
 Long newCustomerId = null;
 try
 {
 connection = dataSource.getConnection();
 PreparedStatement preparedStatement =
 connection
 .prepareStatement("select max(customer_id)+1 "
 "as new_customer_id from customers");

 ResultSet resultSet = preparedStatement.executeQuery();

 if (resultSet != null && resultSet.next())
 {
 newCustomerId = resultSet.getLong("new_customer_id");
 }

 connection.close();

 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }

 return newCustomerId;
 }
}

Chapter 9

[319]

As you can see, we declare what roles have access to the methods by using the
@RollesAllowed annotation. This annotation can take either a single String or an
array of Strings as a parameter. When a single String is used as a parameter for
this annotation, only users with the role specified by the parameter can access the
method. If an array of Strings is used as a parameter, users with any of the roles
specified by the array's elements can access the method.

The @RolesAllowed annotation can be used to decorate an EJB class, in which case
its values apply to all the methods in the EJB, or to decorate one or more methods. In
this second case, its values apply only to the method(s) the annotation is decorating.
If, as in our example, both the EJB class and one or more of its methods are decorated
with the @RolesAllowed annotation, the method-level annotation takes precedence.

Application roles need to be mapped to a security realm's group name. This
mapping, along with what realm to use, is set in the sun-ejb-jar.xml
deployment descriptor.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sun-ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD
Application Server 9.0 EJB 3.0//EN" "http://www.sun.com/software/
appserver/dtds/sun-ejb-jar_3_0-0.dtd">
<sun-ejb-jar>
 <security-role-mapping>
 <role-name>appuser</role-name>
 <group-name>appuser</group-name>
 </security-role-mapping>
 <security-role-mapping>
 <role-name>appadmin</role-name>
 <group-name>appadmin</group-name>
 </security-role-mapping>
 <enterprise-beans>
 <ejb>
 <ejb-name>CustomerDaoBean</ejb-name>
 <ior-security-config>
 <as-context>
 <auth-method>username_password</auth-method>
 <realm>file</realm>
 <required>true</required>
 </as-context>
 </ior-security-config>
 </ejb>
 </enterprise-beans>
</sun-ejb-jar>

Enterprise JavaBeans

[320]

The <security-role-mapping> element of the sun-ejb-jar.xml file does the
mapping between application roles and the security realm's group. The value of the
<role-name> sub-element must contain the application role; this value must match
the value used in the @RolesAllowed annotation. The value of the <group-name>
sub-element must contain the name of the security group in the security realm used
by the EJB. In this example, we map two application roles to the corresponding
groups in the security realm. Although in this particular example the name of the
application role and the security group match, this does not need to be the case.

Automatically Matching Roles to Security Groups
It is possible to automatically match any application roles to identically
named security groups in the security realm. This can be accomplished
by logging in to the GlassFish web console, clicking on the Configuration
node, clicking on Security, then clicking on the checkbox labeled Default
Principal To Role Mapping, and saving this configuration change.

As can be seen in the example, the security realm to use for authentication is defined
in the <realm> sub-element of the <as-context> element. The value of this
sub-element must match the name of a valid security realm in the application server.
Other sub elements of the <as-context> element include <auth-method>, the only
valid value for which is username_password, and <required>, whose only valid
values are true and false.

Client Authentication
If the client code accessing a secured EJB is part of a web application whose user has
already authenticated, then the user's credentials will be used to determine if the
user should be allowed to access the method he/she is trying to execute.

Stand-alone clients must be executed through the appclient utility. The following
code illustrates a typical client for our, secured session bean.

package net.ensode.glassfishbook;

import javax.ejb.EJB;

public class Client
{
 @EJB
 private static CustomerDao customerDao;

 public static void main(String[] args)
 {
 Long newCustomerId;

Chapter 9

[321]

 Customer customer = new Customer();
 customer.setFirstName("Mark");
 customer.setLastName("Butcher");
 customer.setEmail("butcher@phony.org");

 System.out.println("Saving New Customer...");
 newCustomerId = customerDao.saveNewCustomer(customer);

 System.out.println("Retrieving customer...");
 customer = customerDao.getCustomer(newCustomerId);
 System.out.println(customer);
 }
}

As you can see, there is nothing the code is doing in order to authenticate the user.
The session bean is simply injected into the code via the @EJB annotation and it is
used as usual. The reason this works is because the appclient utility takes care
of authenticating the user. Passing the -user and -password arguments with the
appropriate values will authenticate the user:

appclient -client ejbsecurityclient.jar -user peter -password secret

The above command will authenticate a user with a user name of "peter" and a
password of "secret". Assuming the credentials are correct and that the user has the
appropriate permissions, the EJB code will execute and we should see the expected
output from the Client class above:

Saving New Customer...

Retrieving customer...

customerId = 29

firstName = Mark

lastName = Butcher

email = butcher@phony.org

If we don't enter the user name and password from the command line, appclient
will prompt us for a user name and password through a graphical window. In our
example, entering the following command:

appclient -client ejbsecurityclient.jar

Enterprise JavaBeans

[322]

will result in a pop-up window like the following to show up.

We can simply enter our user name and password in the appropriate fields, and after
validating the credentials, the application will execute as expected.

Summary
In this chapter, we covered how to implement business logic via stateless and
stateful session beans. We also explained how to take advantage of the transactional
nature of EJBs to simplify implementing the Data Access Object (DAO) pattern.

Additionally, we explained the concept of Container-Managed Transactions, and
how to control them by using the appropriate annotations. We also explained how
to implement Bean-Managed Transaction, for cases in which Container-Managed
Transactions are not enough to satisfy our requirements.

Life cycles for the different types of Enterprise Java beans were covered, including an
explanation on how to have EJB methods automatically invoked by the EJB container
at certain points in the life cycle.

We also covered how to have EJB methods invoked periodically by the EJB container
by taking advantage of the EJB timer service.

Finally, we explained how to make sure EJB methods are only invoked by authorized
users by annotating the EJB classes and/or methods and by adding the appropriate
entries to the sun-ejb-jar.xml deployment descriptor.

Web Services
The Java EE 5 specification includes the JAX-WS API as one of its technologies.
JAX-WS is used to easily develop web services. It stands for Java API for XML Web
Services. JAX-WS is a high-level API. Invoking web services via JAX-WS is done via
remote procedure calls. JAX-WS is a very natural API for Java developers.

Some of the topics we will cover are:

Developing web services with the JAX-WS API
Developing web service clients with JAX-WS
Adding attachments to web service calls
Exposing EJBs as web services
Securing web services

Developing Web Services with JAX-WS
JAX-WS is a high level API that simplifies development of web services. Developing
a web service via JAX-WS consists of writing a class with public methods to be
exposed as web services. Both the class and the methods need to be decorated with
annotations specifying that the methods are to be exposed as web services. The
following example illustrates this process:

package net.ensode.glassfishbook;

import javax.jws.WebMethod;
import javax.jws.WebService;

@WebService

public class Calculator
{
 @WebMethod

•

•

•

•

•

Web Services

[324]

 public int add(int first, int second)
 {
 return first + second;
 }

 @WebMethod

 public int subtract(int first, int second)
 {
 return first - second;
 }
}

The above class exposes its two methods as web services. The add() method simply
adds the two int primitives that it receives as parameters and returns the result. The
substract() method subtracts its two parameters and returns the result.

We indicate that the class implements a web service by decorating it with the
@WebService annotation. Any methods that we would like exposed as web services
need to be decorated with the @WebMethod annotation. Only public methods can be
exposed as web services.

To deploy our web service, we need to package it in a WAR file. Like any valid
WAR file, our WAR file must contain a web.xml deployment descriptor in its
META-INF directory. Nothing needs to be added to the WAR file's web.xml in order
to successfully deploy our web service; as a matter of fact, if no additional servlets
are deployed in the WAR file, then simply having an empty <web-app> element in
the deployment descriptor will be enough to successfully deploy our WAR file. That
is the approach we took for our example.

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="2.5"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.
sun.com/xml/ns/javaee/web-app_2_5.xsd">
</web-app>

After compiling and packaging the above code and deployment descriptor in a WAR
file and deploying it, we can verify that it was successfully deployed by logging into
the GlassFish admin web console and expanding the Web Services node at the
left-hand side. We should see our newly deployed web service listed under
this node.

Chapter 10

[325]

Web Services

[326]

Now that we know that our web service has been successfully deployed, we can
easily test it by clicking on the Test button.

Chapter 10

[327]

To test the methods, we can simply enter some parameters in the text fields and click
on the appropriate button. For example, entering the values 2 and 3 in the text fields
corresponding to the add method, and clicking on the add button would result in the
following output:

Web Services

[328]

JAX-WS uses the SOAP protocol, behind the scenes, to exchange information
between web service clients and servers. By scrolling down the page, we can see the
SOAP request and response generated by our test.

As application developers, we don't need to concern ourselves too much with these
SOAP requests, because they are automatically taken care of by the JAX-WS API.

Chapter 10

[329]

Web service clients need a WSDL (Web Services Definition Language) file in order
to generate executable code that they can use to invoke the web service. WSDL
files are typically placed in a web server and accessed by the client via its URL.
When deploying web services developed using JAX-WS, a WSDL is automatically
generated for us. We can see it, along with its URL, by clicking on the View WSDL
link that is shown when we click on our web service in GlassFish's web console.

Web Services

[330]

Notice the WSDL's URL in the browser's location text field; we will need this URL
when developing a client for our web service.

Developing a Web Service Client
As we mentioned earlier, executable code needs to be generated from a web service's
WSDL. A web service client will then invoke this executable code to access the web
service.

GlassFish includes a utility to generate Java code from a WSDL. The name of the
utility is wsimport. It can be found under [glassfish installation directory]/
glassfish/bin/. The only required argument for wsimport is the URL of the WSDL
corresponding to the web service.

wsimport http://localhost:8080/calculatorservice/CalculatorService?wsdl

The above command will generate a number of compiled Java classes that allow
client applications to access our web service:

Add.class

AddResponse.class

Calculator.class

CalculatorService.class

ObjectFactory.class

package-info.class

Subtract.class

SubtractResponse.class

Keeping Generated Source Code
By default, the source code for the generated class files is automatically
deleted. It can be kept by passing the -keep parameter to wsimport.

These classes need to be added to the client's CLASSPATH in order for them to be
accessible to the client's code.

In addition to the command-line tool, Glassfish includes a custom ANT task to
generate code from a WSDL. The following ANT build script illustrates its usage:

<project name="calculatorserviceclient" default="wsimport"
basedir=".">
 <target name="wsimport">
 <taskdef name="wsimport"

•

•

•

•

•

•

•

•

Chapter 10

[331]

 classname="com.sun.tools.ws.ant.WsImport">
 <classpath
 path="/opt/glassfish/lib/webservices-tools.jar"/>
 <classpath path="/opt/glassfish/lib/webservices-rt.jar"/>
 <classpath path="/opt/glassfish/lib/javaee.jar"/>
 </taskdef>
 <wsimport wsdl="http://localhost:8080/calculatorservice/
CalculatorService?wsdl" />
 </target>
</project>

The above example is a very minimal ANT build script that only illustrates how to
set up the custom <wsimport> ANT target; in reality the ANT build script for the
project would have several other targets for compilation, building a WAR file, etc.

As <wsimport> is a custom ANT target and it is not standard, we need to add
a <taskdef> element to our ANT build script. We need to set the its name and
classname attributes as illustrated in the example. Additionally, we need to add the
following JAr files to the task's CLASSPATH via nested <classpath> elements:

webservices-tools.jar

webservices-rt.jar

javaee.jar

All three of these JAR files can be found under the [glassfish installation
directory]/glassfish/lib directory.

Once we set up the custom <wsimport> task via the <taskdef> element, we are
ready to use it. We need to indicate the WSDL location via its wsdl attribute. Once
this task executes, the Java code needed to access the web service defined by the
WSDL is generated.

In addition to the custom ANT target for wsimport, there is a plugin for Maven 2
that implements this functionality as well. Its use is illustrated in the following
pom.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://
 maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>net.ensode.glassfishbook</groupId>
 <artifactId>calculatorserviceclient</artifactId>
 <packaging>jar</packaging>
 <name>Simple Web Service Client</name>

•

•

•

Web Services

[332]

 <version>1.0</version>
 <url>http://maven.apache.org</url>
 <repositories>
 <repository>
 <id>java.net</id>
 <url>https://maven-repository.dev.java.net/nonav/repository</url>
 <layout>legacy</layout>
 </repository>
 </repositories>
 <dependencies>
 <dependency>

 <groupId>com.sun.xml.ws</groupId>

 <artifactId>jaxws-rt</artifactId>

 <version>2.1</version>

 </dependency>

 <dependency>
 <groupId>javaee</groupId>
 <artifactId>javaee-api</artifactId>
 <version>5</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
 <build>
 <finalName>calculatorserviceclient</finalName>
 <plugins>
 <plugin>

 <groupId>org.codehaus.mojo</groupId>

 <artifactId>jaxws-maven-plugin</artifactId>

 <version>1.0-beta-1-SNAPSHOT</version>

 <executions>

 <execution>

 <goals>

 <goal>wsimport</goal>

 </goals>

 <configuration>

 <wsdlUrls>

 <wsdlUrl>

 http://localhost:8080/calculatorservice/
 CalculatorService?wsdl

 </wsdlUrl>

 </wsdlUrls>

 </configuration>

Chapter 10

[333]

 </execution>

 </executions>

 </plugin>

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <configuration>
 <archive>
 <manifest>
 <mainClass>
 net.ensode.glassfishbook.CalculatorServiceClient
 </mainClass>
 <addClasspath>true</addClasspath>
 </manifest>
 </archive>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.5</source>
 <target>1.5</target>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

In order for the plugin to execute correctly, we need to add a dependency to the
jaxws-rt artifact under the com.sun.xml.ws group. Once we do that, we need
to set it up via the <plugin> sub-element of the <build> element in the pom.xml
file. The WSDL location needs to be specified in the <wsdlUrl> sub-element of the
<configuration> element. This plugin executes automatically when we build our
code from Maven 2. Just like the ANT task, it generates code we can use to access the
web service from a client.

We will now develop a simple client to access our web service.

package net.ensode.glassfishbook;

import javax.xml.ws.WebServiceRef;

public class CalculatorServiceClient
{
 @WebServiceRef(wsdlLocation =

Web Services

[334]

 "http://localhost:8080/calculatorservice/" +
 "CalculatorService?wsdl")
 private static CalculatorService calculatorService;

 public void calculate()
 {
 Calculator calculator =
 calculatorService.getCalculatorPort();

 System.out.println("1 + 2 = "
 + calculator.add(1, 2));
 System.out.println("1 - 2 = "
 + calculator.subtract(1, 2));
 }

 public static void main(String[] args)
 {
 new CalculatorServiceClient().calculate();
 }
}

The @WebServiceRef annotation injects an instance of the web service into our
client application. Its wsdlLocation attribute contains the URL of the WSDL
corresponding to the web service we are invoking.

Notice that the web service class is an instance of a class called CalculatorService.
This class was created when we invoked the wsimport utility; wsimport
always generates a class whose name is the name of the class we implemented
plus the "Service" suffix. We use this service class to obtain an instance of the
web service class we developed. In our example, we do this by invoking the
getCalculatorPort() method on the CalculatorService instance. In general,
the method to invoke to get an instance of our web service class follows the pattern
getNamePort(), where Name is the name of the class we wrote to implement the
web service. Once we get an instance of our web service class, we can simply invoke
its methods as with any regular Java object.

Strictly speaking, the getNamePort() method of the service class
returns an instance of a class implementing an interface generated by
wsimport. This interface is given the name of our web service class
and declares all of the methods we declared to be web services. For all
practical purposes, the object returned is equivalent to our web
service class.

Chapter 10

[335]

Recall from Chapter 9 that in order for resource injection to work in a stand-alone
client (that does not get deployed to GlassFish), we need to execute it through
the appclient utility. Assuming we packaged our client in a JAR file called
calculatorserviceclient.jar, the command to execute would be:

appclient -client calculatorserviceclient.jar

After entering the above command in the command line, we should see the output of
our client on the console.

1 + 2 = 3

1 - 2 = -1

In this example, we passed primitive types as parameters and return values; of
course it is also possible to pass objects both as parameters and as return values.
Unfortunately, not all standard Java classes or primitive types can be used as method
parameters or return values when invoking web services. The reason for this is
that, behind the scenes, method parameters and return types get mapped to XML
definitions, and not all types can be properly mapped.

Valid types that can be used in JAX-WS web service calls are listed below:

java.awt.Image
java.lang.Object
Java.lang.String
java.math.BigDecimal
java.math.BigInteger
java.net.URI
java.util.Calendar
java.util.Date
java.util.UUID
javax.activation.DataHandler
javax.xml.datatype.Duration
javax.xml.datatype.XMLGregorianCalendar
javax.xml.namespace.QName
javax.xml.transform.Source

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Web Services

[336]

Additionally, the following primitive types can be used:

boolean
byte
byte
double
float
int
long
short

We can also use our own custom classes as method parameters and/or return values
for web service method, but member variables of our classes must be one of the
listed types.

Additionally, it is legal to use arrays as both method parameters and return values;
however, when executing wsimport, these arrays get converted to Lists, generating
a mismatch between the method signature in the web service and the method
call invoked in the client. For this reason, it is preferred to use Lists as method
parameters and/or return values, because this is also legal and does not create the
mismatch between the client and the server.

JAX-WS internally uses the Java Architecture for XML Binding to create
SOAP messages from method calls. The types we are allowed to use for
method calls and return values are the ones that JAXB supports. For more
information on JAXB, see https://jaxb.dev.java.net/.

Sending Attachments to Web Services
In addition to sending and accepting the data types discussed in the previous
sections, web service methods can send and accept file attachments. The following
example illustrates how to do this:

package net.ensode.glassfishbook;

import java.io.FileOutputStream;
import java.io.IOException;

import javax.activation.DataHandler;
import javax.jws.WebMethod;
import javax.jws.WebService;

@WebService

•

•

•

•

•

•

•

•

Chapter 10

[337]

public class FileAttachment
{

 @WebMethod
 public void attachFile(DataHandler dataHandler)

 {
 FileOutputStream fileOutputStream;
 try
 {
 //substitute "/tmp/attachment.gif" with
 // a valid path, if necessary.
 fileOutputStream = new FileOutputStream("/tmp/attachment.gif");

 dataHandler.writeTo(fileOutputStream);

 fileOutputStream.flush();
 fileOutputStream.close();
 }
 catch (IOException e)
 {
 e.printStackTrace();
 }

 }
}

In order to write a web service method that receives one or more attachments, all
we need to do is to add a parameter of type javax.activation.DataHandler for
each attachment the method will receive. In the above example, the attachFile()
method takes a single parameter of this type and simply writes it to the file system.

Just as with any standard web service, the above code needs to be packaged in a
WAR file and deployed. Once deployed, a WSDL will automatically be generated.
We then need to execute the wsimport utility to generate code that our web service
client can use to access the web service. As previously discussed, wsimport can be
invoked directly from the command line, via a custom ANT target, or via a Maven 2
plugin. Once we have executed wsimport to generate code to access the web service,
we can write and compile our client code package net.ensode.glassfishbook;

import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.channels.FileChannel;

import javax.xml.ws.WebServiceRef;

public class FileAttachmentServiceClient

Web Services

[338]

{
 @WebServiceRef(wsdlLocation =
 "http://localhost:8080/fileattachmentservice/" +
 "FileAttachmentService?wsdl")
 private static FileAttachmentService fileAttachmentService;

 public static void main(String[] args)
 {
 FileAttachment fileAttachment = fileAttachmentService
 .getFileAttachmentPort();
 File fileToAttach = new File("src/main/resources/logo.gif");

 byte[] fileBytes = fileToByteArray(fileToAttach);

 fileAttachment.attachFile(fileBytes);

 System.out.println("Successfully sent attachment.");
 }

 static byte[] fileToByteArray(File file)
 {
 byte[] fileBytes = null;

 try
 {
 FileInputStream fileInputStream;
 fileInputStream = new FileInputStream(file);

 FileChannel fileChannel = fileInputStream.getChannel();
 fileBytes = new byte[(int) fileChannel.size()];
 ByteBuffer byteBuffer = ByteBuffer.wrap(fileBytes);
 fileChannel.read(byteBuffer);
 }
 catch (IOException e)
 {
 e.printStackTrace();
 }
 return fileBytes;
 }
}

A web service client that needs to send one or more attachments to the web service
first obtains an instance of the web service as usual. It then creates an instance of
java.io.File passing the location of the file to attach as its constructor's parameter.

Once we have an instance of the java.io.File, containing the file we wish to attach,
we then need to convert the file to a byte array, and pass this byte array to the web
service method that expects an attachment.

Chapter 10

[339]

Notice that, unlike when passing standard parameters, the parameter type used
when the client invokes a method expecting a parameter is different from the
parameter type of the method in the web server code. The method in the web
server code expects an instance of javax.activation.DataHandler for each
attachment. However, the code generated by wsimport expects an array of bytes
for each attachment. These arrays of bytes are converted to the right type (javax.
activation.DataHandler), behind the scenes, by the wsimport-generated code. We,
as application developers, don't need to concern ourselves with the details of why
this happens. We just need to keep in mind that when sending attachments to a web
service method, the parameter types will be different in the web service code and in
the client invocation of the corresponding method in the wsimport-generated code.

Exposing EJBs as Web Services
In addition to creating web services as described in the previous section, public
methods of stateless session beans can easily be exposed as web services. The
following example illustrates how to do this:

package net.ensode.glassfishbook;

import javax.ejb.Stateless;
import javax.jws.WebService;

@Stateless
@WebService

public class DecToHexBean
{
 public String convertDecToHex(int i)
 {
 return Integer.toHexString(i);
 }
}

As you can see, the only thing we need to do to expose a stateless session bean's
public methods is decorate its class declaration with the @WebService annotation.
Needless to say, as the class is a session bean, it also needs to be decorated with the
@Stateless annotation.

Web Services

[340]

Just like regular stateless session beans, session beans exposed as web services need
to be deployed in a JAR file. Once deployed, we can see the new web service under
the Web Services node in the GlassFish administration web console.

Notice that the value in the Type column at the far right of the screenshot for our
new web service is EJB.

Just like standard web services, EJB web services automatically generate a WSDL for
use by their clients upon deployment.

EJB Web Service Clients
The following class illustrates the procedure to be followed to access EJB web service
methods from a client application.

package net.ensode.glassfishbook;

import javax.xml.ws.WebServiceRef;

public class DecToHexClient

Chapter 10

[341]

{
 @WebServiceRef(wsdlLocation = "http://localhost:8080/
 DecToHexBeanService/DecToHexBean?wsdl")
 private static DecToHexBeanService decToHexBeanService;

 public void convert()
 {
 DecToHexBean decToHexBean =
 decToHexBeanService.getDecToHexBeanPort();

 System.out.println("decimal 4013 in hex is: "
 + decToHexBean.convertDecToHex(4013));
 }

 public static void main(String[] args)
 {
 new DecToHexClient().convert();
 }
}

As you can see, nothing special needs to be done when accessing an EJB web service
from a client. The procedure is the same as with standard web services.

As the above example is a stand-alone application, it needs to be executed via the
appclient application.

appclient -client ejbwsclient.jar

The above command results in the following output:

decimal 4013 in hex is: fad

Securing Web Services
Just as with regular web applications, web services can be secured so that only
authorized users can access them. This can be accomplished by modifying the web
service's web.xml deployment descriptor.

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="2.5"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.
sun.com/xml/ns/javaee/web-app_2_5.xsd">
 <security-constraint>

 <web-resource-collection>

 <web-resource-name>

 Calculator Web Service

 </web-resource-name>

Web Services

[342]

 <url-pattern>/CalculatorService/*</url-pattern>

 <http-method>POST</http-method>

 </web-resource-collection>

 <auth-constraint>

 <role-name>user</role-name>

 </auth-constraint>

 </security-constraint>

 <login-config>

 <auth-method>BASIC</auth-method>

 <realm-name>file</realm-name>

 </login-config>

</web-app>

In this example, we modify our calculator service so that only authorized users
can access it. Notice that the modifications needed to secure the web service are no
different from the modifications needed to secure any regular web application. The
URL pattern to use for the <url-pattern> element can be obtained by clicking on
the View WSDL link corresponding to our service. In our example, the URL for the
link is:

http://localhost:8080/calculatorservice/CalculatorService?wsdl

The value to use for <url-pattern> is the value right after the context root
(/CalculatorService in our example) and before the question mark, followed
by a slash and an asterisk.

Notice that the above web.xml deployment descriptor only secures HTTP POST
requests; the reason for this is that wsimport uses a GET request to obtain the WSDL
and generate the appropriate code. If GET requests are secured, wsimport will fail
because it will be denied access to the WSDL. Future versions of wsimport will allow
us to specify a user name and password for authentication. In the meantime, the
workaround is to secure only POST requests.

The following code illustrates how a stand-alone client can access a secured
web service:

package net.ensode.glassfishbook;

import javax.xml.ws.BindingProvider;
import javax.xml.ws.WebServiceRef;

public class CalculatorServiceClient
{
 @WebServiceRef(wsdlLocation = "http://localhost:8080/
securecalculatorservice/CalculatorService?wsdl")
 private static CalculatorService calculatorService;

Chapter 10

[343]

 public void calculate()
 {
 Calculator calculator =
 calculatorService.getCalculatorPort();
 ((BindingProvider) calculator).getRequestContext().put(

 BindingProvider.USERNAME_PROPERTY, "joe");

 ((BindingProvider) calculator).getRequestContext().put(

 BindingProvider.PASSWORD_PROPERTY, "password");

 System.out.println("1 + 2 = " + calculator.add(1, 2));
 System.out.println("1 - 2 = " + calculator.subtract(1, 2));
 }

 public static void main(String[] args)
 {
 new CalculatorServiceClient().calculate();
 }
}

The above code is a modified version of the Calculator service stand-alone client we
saw before. This version was modified to access the secure version of the service. As
can be seen in the code, all we need to do to access the secured version of the server
is to put a user name and a password in the request context. The user name and
password must be valid for the realm used to authenticate the web service.

We can add the user name and password to the request context by casting our
web service endpoint class to javax.xml.ws.BindingProvider and calling its
getRequestContext() method. This method returns a java.util.Map instance. We
can then simply add the user name and password by calling the Map's put method
and using the constants USERNAME_PROPERTY and PASSWORD_PROPERTY defined in
BindingProvider as keys, and the corresponding String objects as values.

Securing EJB Web Services
Just like standard web services, EJBs exposed as web services can be secured so that
only authorized clients can access them. This can be accomplished by configuration
of the EJB via the sun-ejb-jar.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sun-ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD
Application Server 9.0 EJB 3.0//EN" "http://www.sun.com/software/
appserver/dtds/sun-ejb-jar_3_0-0.dtd">
<sun-ejb-jar>
 <enterprise-beans>
 <ejb>
 <ejb-name>SecureDecToHexBean</ejb-name>

Web Services

[344]

 <webservice-endpoint>
 <port-component-name>
 SecureDecToHexBean
 </port-component-name>
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm>file</realm>
 </login-config>
 </webservice-endpoint>
 </ejb>
 </enterprise-beans>
</sun-ejb-jar>

As can be seen in the above deployment descriptor, security is set up differently
for EJBs exposed as web services than with standard EJBs. For EJBs exposed as web
services, the security configuration is done inside the <webservice-endpoint>
element of the sun-ejb-jar.xml file.

The <port-component-name> element must be set to the name of the EJB we are
exposing as a webservice. This name is defined in the <ejb-name> element for
the EJB.

The <login-config> element is very similar to the corresponding element in a web
application's web.xml deployment descriptor. The <login-config> element must
contain an authorization method, defined by its <auth-method> sub-element, and a
realm to use for authentication, which is defined by the <realm> sub-element.

Do not use the @RolesAllowed annotation for EJBs intended to be
exposed as web services. This annotation is intended for when the EJB
methods are accessed through its remote or local interface. If an EJB
or one or more of its methods is decorated with this annotation, then
invoking the method will fail with a security exception.

Once we configure an EJB web service for authentication, package it in a JAR file,
and deploy it as usual, the EJB web service is now ready to be accessed by clients.

The following code example illustrates how an EJB web service client can access a
secure EJB web service:

package net.ensode.glassfishbook;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.WebServiceRef;
public class DecToHexClient
{
 @WebServiceRef(wsdlLocation = "http://localhost:8080/

Chapter 10

[345]

 SecureDecToHexBeanService/SecureDecToHexBean?wsdl")
 private static SecureDecToHexBeanService secureDecToHexBeanService;

 public void convert()
 {
 SecureDecToHexBean secureDecToHexBean =
 secureDecToHexBeanService
 .getSecureDecToHexBeanPort();
 ((BindingProvider) secureDecToHexBean).getRequestContext().put(
 BindingProvider.USERNAME_PROPERTY, "joe");
 ((BindingProvider) secureDecToHexBean).getRequestContext().put(
 BindingProvider.PASSWORD_PROPERTY, "password");

 System.out.println("decimal 4013 in hex is: "
 + secureDecToHexBean.convertDecToHex(4013));
 }

 public static void main(String[] args)
 {
 new DecToHexClient().convert();
 }
}

As you can see in the above example, the procedure for accessing an EJB exposed as
a web service is identical to accessing a standard web service. The implementation of
the web service is irrelevant to the client.

Summary
In this chapter, we covered how to develop web services and web service clients via
the JAX-WS API. We explained how to incorporate web service code generation for
web service clients when using ANT or Maven 2 as a build tool. We also covered the
valid types that can be used for remote method calls via JAX-WS. Additionally, we
discussed how to send attachments to a web service. We also covered how to expose
an EJB's methods as web services. Lastly, we covered how to secure web services so
that they are not accessible to unauthorized clients.

Beyond Java EE
In previous chapters, we have covered all major Java EE technologies and APIs. In
this chapter, we will cover additional frameworks that build upon Java EE.

Some of the topics that we will cover include:

Facelets
Ajax4jsf
Seam

Facelets is an open-source alternative view technology that can be used when
developing JSF applications.

Ajax4jsf is a JSF component library that greatly eases "ajaxifying" JSF applications.

Seam is a framework built on top of JSF and EJB3 that eases the development of
applications that use these two technologies.

Facelets
Facelets is an alternative view technology for JavaServer Faces applications that
offers a number of advantages over JSPs.

Facelets allows the creation of pages using XHTML markup that can be
created with WYSIWYG tools and can be previewed in a browser without
having to deploy a WAR file.
Facelets allows the modification of a web application's visual layout with
very little effort.
Facelets was designed specifically for JSF, where as JSP predates JSF.
Therefore its life cycle is different from the JSF life cycle.

More information about Facelets can be found at https://facelets.dev.java.net/.

•

•

•

•

•

•

Beyond Java EE

[348]

Downloading Facelets
Facelets can be downloaded by pointing the browser to https://facelets.dev.
java.net/servlets/ProjectDocumentList, clicking on the releases link, then
clicking on the latest stable version.

A single JAR file will be downloaded; this JAR file needs to be placed in the
WEB-INF/lib directory in the application's WAR file.

If we are using Maven as our build tool, we just need to take advantage of Maven's
dependency-management mechanism to download Facelets. The relevant section of
the application's pom.xml file would look like this:

<dependencies>
 <dependency>
 <groupId>com.sun.facelets</groupId>

Chapter 11

[349]

 <artifactId>jsf-facelets</artifactId>

 <version>[1.1.10,)</version>

 </dependency>

 <!-- Additional dependencies can be added -->
</dependencies>

Maven would then download the Facelets library from a central repository
automatically when building the code for the first time, and it will place the Facelets
JAR file to the appropriate location in the application's WAR file when packaging
the application.

Configuring Our Facelets Application
Before we can use Facelets in our web application, we need to configure it by
modifying its web.xml deployment descriptor.

<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="2.5"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/
 javaee http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">

 <context-param>

 <param-name>javax.faces.DEFAULT_SUFFIX</param-name>

 <param-value>.xhtml</param-value>

 </context-param>

 <context-param>

 <param-name>facelets.DEVELOPMENT</param-name>

 <param-value>true</param-value>

 </context-param>

 <context-param>

 <param-name>com.sun.faces.validateXml</param-name>

 <param-value>true</param-value>

 </context-param>

 <context-param>

 <param-name>com.sun.faces.verifyObjects</param-name>

 <param-value>true</param-value>

 </context-param>

 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>

Beyond Java EE

[350]

 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>*.jsf</url-pattern>
 </servlet-mapping>
</web-app>

The <context-param> elements in web.xml contain the application servlet context
initialization parameters. The javax.faces.DEFAULT_SUFFIX parameter specifies
the file extension for pages that contain JSF components. The default is .jsp; as
Facelets does not use JSPs, we need to modify this value. Facelets typically uses
XHTML for its view technology, therefore .xhtml is typically used as the value for
this context parameter when developing web applications with Facelets.

Setting the facelets.DEVELOPMENT initialization parameter to true instructs
Facelets to generate output useful for debugging.

The com.sun.faces.validateXml context parameter instructs the JSF reference
implementation (included with GlassFish) to validate the faces-config.xml file.

The com.sun.faces.verifyObjects context parameter instructs the JSF reference
implementation to verify that all components, converters, renderers, and validators
in the application can be successfully created.

Additionally, some configuration needs to take place in the application's faces-
config.xml file in order to successfully deploy a JSF web application using Facelets
as its view technology.

<faces-config xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.
sun.com/xml/ns/javaee/web-facesconfig_1_2.xsd"
 version="1.2">
 <application>

 <view-handler>

 com.sun.facelets.FaceletViewHandler

 </view-handler>

 </application>

</faces-config>

A view handler is a class that handles the JSF view creation and rendering. All
JSF implementations must provide a default view handler class, and this default
implementation is used unless we instruct JSF to use an alternative one. Facelets
comes with a custom view handler that we need to use in order to develop JSF
applications using Facelets as its view technology.

Chapter 11

[351]

As can be seen in the example, we specify the view handler as the value of the
<view-handler> element in faces-config.xml. Facelet's view handler is com.sun.
facelets.FaceletViewHandler.

After configuring our application, we are ready to start writing our
Facelets application.

Writing a Facelets Application
Other than the additional necessary configuration, the only difference between a JSF
application using Facelets and one using JSPs is the view technology used. Facelets
applications typically use XHTML pages for the view.

In this section, we will develop a fictitious pizza ordering system. The markup for
the data entry page looks like this:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:f="http://java.sun.com/jsf/core">

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Pizza Builder</title>
</head>
<body>
<h2>Customize Your Pizza</h2>
<h:messages/>
<form jsfc="h:form" id="pizzaForm">

<table cellspacing="0" cellpadding="0" border="0">
 <tr>
 <td align="right">Crust: </td>
 <td>
 <h:selectOneRadio id="crustItems" value="#{pizza.crust}">

 <input type="radio" jsfc="f:selectItem"

 itemValue="Hand Tossed"

 id="htItem" itemLabel="Hand Tossed"/>

 <label jsfc="h:outputLabel" for="htItem"

 rendered="false">Hand Tossed</label>

 <input type="radio" jsfc="f:selectItem"

 itemValue="Thin"

 itemLabel="Thin" id="thinItem" />

Beyond Java EE

[352]

 <label jsfc="h:outputLabel"

 for="thinItem" rendered="false">

 Thin</label>

 </h:selectOneRadio>

 </td>
 </tr>
 <tr>
 <td align="right">Toppings: </td>
 <td>
 <h:selectManyCheckbox value="#{pizza.toppings}"

 id="toppingItems">

 <input type="checkbox" jsfc="f:selectItem"

 itemValue="Sausage"

 id="sausageItem" itemLabel="Sausage"/>

 <label jsfc="h:outputLabel" for="sausageItem"

 rendered="false">Sausage</label>

 <input type="checkbox" jsfc="f:selectItem"

 itemValue="Pepperoni"

 id="pepperoniItem" itemLabel="Pepperoni" />

 <label jsfc="h:outputLabel" for="pepperoniItem"

 rendered="false">Pepperoni</label>

 <input type="checkbox" jsfc="f:selectItem"

 itemValue="Green Peppers" id="greenPeppersItem"

 itemLabel="Green Peppers" />

 <label jsfc="h:outputLabel" for="greenPeppersItem"

 rendered="false">Green Peppers</label>

 <input type="checkbox" jsfc="f:selectItem"

 itemValue="Onions"

 id="onionsItem" itemLabel="Onions" />

 <label jsfc="h:outputLabel" for="onionsItem"

 rendered="false">Onions</label>

 </h:selectManyCheckbox>

 </td>
 </tr>
 <tr>
 <td align="right">Comments: </td>
 <td>
 <input type="text" size="40" jsfc="h:inputText"

 value="#{pizza.comments}" id="commentField"/>

 </td>

Chapter 11

[353]

 </tr>
 <tr>
 <td> </td>
 <td>
 <input type="Submit" value="Submit"

 jsfc="h:commandButton"

 action="submit" id="submitButton"/>

 </td>
 </tr>
</table>
</form>
</body>
</html>

The first thing to notice about this markup is that we use XML Namespaces to
include JSF components in our XHTML file. In the above example, standard JSF
components are included via the following two lines:

xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"

Recall from Chapter 6 that when using JSPs, the taglib directive is used for
this purpose.

We should also notice that a lot of the XHTML elements contain a non-standard
jsfc attribute. What this attribute does is convert the XHTML element into the JSF
component specified as the value for the jsfc attribute.

A couple of components used in the page have no XHTML equivalent, namely the
<h:selectOneRadio> and the <h:selectManyCheckbox components>. We can
simply add them to the page and they will be ignored by the browser.

<f:selectItem> components declare their label as the value of their itemlabel
attribute; as this attribute is not a valid attribute of the XHTML input field , it is
ignored by the browser, therefore it does not preview properly when opening the
page in the browser. If we add a standard XHTML label to the markup, the label
is rendered twice when rendering the page from JSF (once from the itemLabel
attribute and once from the <label> element); to get around this issue, we added
<label> elements with a jsfc attribute of h:outputLabel and set their rendered
attribute to false. As the rendered attribute is not a valid XHTML attribute, it
is ignored by the browser and the labels are visible when previewing the page.
However, when rendering the page from JSF, the rendered attribute is interpreted
and the labels are not displayed.

Beyond Java EE

[354]

The following screenshot shows how this file is rendered when opening it directly in
the browser.

The Comments field shows a value-binding expression. This expression is replaced
with its value when the page is rendered through JSF. This and all other value
binding expressions refer to a managed bean called pizza. The code for this backing
bean is shown next.

package net.ensode.glassfishbook;

public class Pizza
{
 private String crust;
 private String[] toppings;
 private String comments;

 public String getComments()
 {
 return comments;
 }

 public void setComments(String comments)
 {
 this.comments = comments;
 }

 public String getCrust()

Chapter 11

[355]

 {
 return crust;
 }

 public void setCrust(String crust)
 {
 this.crust = crust;
 }

 public String[] getToppings()
 {
 return toppings;
 }

 public void setToppings(String[] toppings)
 {
 this.toppings = toppings;
 }

 public String getToppingListString()
 {
 String toppingListString = "";
 StringBuffer toppingListStringBuffer;

 if (toppings != null)
 {
 toppingListStringBuffer = new StringBuffer();
 int i = 0;
 for (String topping : toppings)
 {
 toppingListStringBuffer.append(topping);
 if (i++ < toppings.length - 1)
 {
 toppingListStringBuffer.append(", ");
 }
 }
 toppingListString = toppingListStringBuffer.toString();
 }

 return toppingListString;
 }

}

Beyond Java EE

[356]

As you can see, there is nothing special about this backing bean; it is simply
a standard JavaBean. Of course, we need to declare this managed bean in the
application's faces-config.xml file.

<faces-config xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://
 java.sun.com/xml/ns/javaee/web-facesconfig_1_2.xsd"
 version="1.2">
 <application>
 <view-handler>com.sun.facelets.FaceletViewHandler</
 view-handler>

 </application>

 <managed-bean>
 <managed-bean-name>pizza</managed-bean-name>
 <managed-bean-class>
 net.ensode.glassfishbook.Pizza
 </managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>

 </managed-bean>

 <navigation-rule>
 <from-view-id>/index.xhtml</from-view-id>
 <navigation-case>
 <from-outcome>submit</from-outcome>
 <to-view-id>/confirmation.xhtml</to-view-id>
 </navigation-case>
 </navigation-rule>

</faces-config>

Again nothing special to make this work with Facelets; the managed bean is declared
just as in any other JSF application.

While we are discussing the application's faces-config.xml file, it is worth taking
a look at the navigation rule. The only peculiar thing about this navigation rule is
that the view IDs end with .xhtml, where in standard JSF applications they
end with .jsp. The reason for this is that the values for the <from-view-id> and
<to-view-id> elements are the file names for the files containing the views. Since
standard JSF uses JSP files and Facelets uses XHTML files, it shouldn't surprise us
that the view IDs in this case end with .xhtml.

Chapter 11

[357]

Notice that the XHTML previous markup file has the hardcoded value of submit as
the value of its action parameter. Recall from Chapter 6 that this value is used to
determine which page to navigate to when the form is submitted. In the navigation
rule, we add this value to the <from-outcome> element, and set the <view-id>
attribute to a page called confirmation.xhtml. We will take a look at this page next.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Confirmation</title>
</head>
<body>
<h2>Confirmation</h2>
<table cellpadding="0" cellspacing="0" border="0">
 <tr>
 <td align="right">Crust: </td>
 <td><span
 jsfc="h:outputText" rendered=
 "false">Thin</td>
 </tr>
 <tr>
 <td align="right">Toppings: </td>
 <td><span jsfc="h:outputText"
 value="#{pizza.toppingListString}">Sausage,
 Onions</td>
 </tr>
 <tr>
 <td align="right">Comments: </td>
 <td><span jsfc="h:outputText" value=
 "#{pizza.comments}">Love your stuff!</
 span></td>
 </tr>
</table>
</body>

</html>

Beyond Java EE

[358]

As this page is a confirmation page, it contains no input fields. There is nothing new
on this page. We again used the trick of setting the rendered attribute of some of the
components to false so that the page previews properly when opening it directly in
the browser, and also renders properly when it is being rendered by JSF.

The following screenshot shows how the file is rendered when opening it directly in
the browser:

We are now done developing our simple application. After deploying it, we can test
it by pointing the browser to http://localhost:8080/faceletsdemo/index.jsf.

Chapter 11

[359]

As we mentioned earlier, the rendered page is pretty much identical to the preview
we saw by loading the XHTML file into the browser before deploying the WAR file.
Submitting the form takes us to the rendered confirmation page.

Again the rendered page looks pretty much identical to the version we previewed by
opening the XML version in the browser.

Previewing pages in the browser without having to deploy an application is a
great feature of Facelets; but of course, it only works if we don't use any custom
components such as those found in JavaServer Faces component libraries like
MyFaces Tomahawk or the Woodstock components. We can still use these
components with Facelets, but they won't be rendered properly when loading
the XHTML files in the browser. Before moving on, it is worth noting that JSF
components can be used directly in Facelets XHTML. It is not necessary to convert
standard XHTML components into JSF components via the jsfc attribute.

Facelets Templating
A typical web application contains several pages that share a look and feel.
Sometimes customers want to make changes to the look and feel or layout of the
application. For example, a customer may want to move a navigation menu from
the left side of every page to the right side of every page. Facelets allow us to define
the layout for all the pages in a web application in a template file. If we later need or
desire to change the layout of all pages in the application, all we need to do is change
the template; all other pages will automatically use the new layout.

Beyond Java EE

[360]

The following example illustrates how to create a Facelets template page.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:h="http://java.sun.com/jsf/html">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Template Demo</title>
</head>
<body>

<h2>
 <ui:insert name="title">Title</ui:insert>
</h2>
<table cellspacing="0" cellpadding="0" border="1">
 <tr>
 <td width="160" valign="top">Navigation

 Home

 Articles

 Utilities</td>

 <td width="100%" valign="top">
 <ui:insert name="body">Body goes here</ui:insert>
 </td>
 </tr>
</table>
</body>

</html>

A Facelets template needs to use a Facelets-specific component library; this library is
declared by the xmlns:ui="http://java.sun.com/jsf/facelets" namespace. The
<ui:insert> tag is what makes this page a template. A Facelets template must have
at least one <ui:insert> tag. Each <ui:insert> tag has a required name attribute.

Pages using a template may declare a corresponding <ui:define> tag, which
also has a name attribute. The body of the <ui:define> tag will be placed in the
position of the corresponding <ui:insert> tag in the template; the name attribute
of the <ui:define> tag must match the name attribute of the corresponding <ui:
insert> tag in the template. If a page using a template is missing a <ui:define>
tag corresponding to one of the template's <ui:insert> tags, then the body of the
template page will be rendered in the appropriate position.

Chapter 11

[361]

The following example illustrates how a page can use a template for its layout.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:h="http://java.sun.com/jsf/html">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
</head>

<body>
<ui:composition template="/template.xhtml">
 <ui:define name="title">

 <h:outputText>Welcome</h:outputText>
 </ui:define>

 <ui:define name="body">
 Welcome to the Facelets templating demo

 application.
 </ui:define>
</ui:composition>
</body>

</html>

We declare we are using a template by adding a <ui:composition> tag and
specifying the template file as the value of its template attribute. <ui:define> tags
need to be nested inside <ui:composition>. It doesn't matter in what order we place
our <ui:define> tags, their bodies will be placed in the position corresponding to
the matching <ui:insert> tag in the template.

Beyond Java EE

[362]

The following screenshot illustrates how this markup is rendered after deploying the
application's WAR file and pointing the browser to its URL.

All pages using the template will display its title and body in the proper locations.
Let's say we wish to center the title for every page, and that we would like to place
the navigation links to the right of the page. All we need to do is modify the
template page.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:h="http://java.sun.com/jsf/html">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Template Demo</title>
</head>

<body>
<h2 align="center">
 <ui:insert name="title">Title</ui:insert>

</h2>

Chapter 11

[363]

<table cellspacing="0" cellpadding="0" border="1">

 <tr>
 <td width="100%" valign="top">
 <ui:insert name="body">Body goes here</ui:insert></td>
 <td width="160" valign="top">Navigation

 Home

 Articles

 Utilities</td>
 </tr>
</table>
</body>

</html>

All we did to meet the new requirements was to add an align attribute to the <h2>
tag and switch the order of the two table cells in the table used to lay out the page.
After making these two changes and redeploying, the page now renders like this:

Of course all pages using the template will automatically use the new layout.

Beyond Java EE

[364]

Ajax4jsf
Ajax4jsf is a library that greatly simplifies the task of developing AJAX-enabled
applications. In essence, what Ajax4jsf allows us to do is to re-render one or more
components in a page without having to submit the whole page. When a certain
event occurs, for instance, a user enters a value on a text field or selects a value from
a multiple select box, Ajax4jsf handles the event. It invokes a method on a managed
bean then re-renders one or more components in the page. This allows us to create
highly interactive AJAX-enabled applications.

More information about Ajax4jsf can be found at
http://labs.jboss.com/jbossajax4jsf/.

Downloading Ajax4jsf
Ajax4jsf can be downloaded by pointing the browser to http://labs.jboss.com/
jbossajax4jsf/downloads and clicking on the Download link corresponding to the
latest version.

In order to start using Ajax4jsf in our applications, there are two JAR files that
need to be extracted from the downloaded ZIP file. One of them will be named
something like ajax4jsf-1.1.0.jar; the other one will be named something like
oscache-2.3.2.jar (the exact names of these files will depend on the version of
Ajax4jsf). These two JAR files need to be placed in the WEB-INF/lib directory of our
web application.

Chapter 11

[365]

Alternatively, if we are using Maven as our build tool, we can take advantage of
Maven's dependency-management mechanism. The relevant sections of the pom.xml
file will look like this:

<repositories>
 <repository>
 <id>repository.jboss.com</id>
 <name>Jboss Repository for Maven</name>
 <url>http://repository.jboss.com/maven2/</url>
 <layout>default</layout>
 </repository>
 <!-- Additional repositories can be added -->
 </repositories>

 <dependencies>
 <dependency>
 <groupId>org.ajax4jsf</groupId>
 <artifactId>ajax4jsf</artifactId>
 <version>[1.1.1,)</version>
 </dependency>
 <!-- Additional dependencies can be added -->
 </dependencies>

The elements inside the <repository> element tell Maven what repository to
download Ajax4jsf from. The elements inside the <dependency> element tell Maven
that our application depends on the Ajax4jsf library. The first time we build our
application, Maven will download Ajax4jsf from its repository along with all of
its dependencies.

Configuring Our JSF Application for Ajax4jsf
Before we can use Ajax4jsf to AJAX enable our JSF application, we need to configure
it by modifying its web.xml deployment descriptor.

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
version="2.5"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/
 javaee http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">

 <context-param>
 <param-name>javax.faces.STATE_SAVING_METHOD</param-name>
 <param-value>server</param-value>

Beyond Java EE

[366]

 </context-param>
 <listener>
 <listener-class>
 com.sun.faces.config.ConfigureListener
 </listener-class>
 </listener>
 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</
 servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>*.jsf</url-pattern>

 </servlet-mapping>
 <filter>
 <filter-name>a4j</filter-name>
 <filter-class>org.ajax4jsf.Filter</filter-class>
 </filter>
 <filter-mapping>
 <filter-name>a4j</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

</web-app>

All we need to do in our web.xml file is set up a filter that will intercept all requests.
This filter is included with Ajax4jsf and contains functionality that allows the library
to do its job.

Writing an AJAX-Enabled Application with
Ajax4jsf
Once we have added the Ajax4jsf filter to the application's web.xml deployment
descriptor, we are ready to develop our AJAX-enabled JSF web application. We will
illustrate how to proceed with an example. The example is a page for a fictitious
online computer store. The page we will develop allows a user to customize a laptop
computer they are about to purchase; as they select different components for the
laptop, its price is updated accordingly. The new price is immediately displayed on
the page, without having to submit the whole page to the server.

Chapter 11

[367]

Without further ado, let's look at the markup for this AJAX-enabled page.

<%@ taglib uri="https://ajax4jsf.dev.java.net/ajax" prefix="a4j"%>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>
<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Customize Your Laptop</title>
</head>
<body>
<h2>Customize Your Laptop</h2>
<f:view>
 <h:form>
 <table cellpadding="0" cellspacing="0" border="0">
 <tr>
 <td align="right"><h:outputLabel for="screenField"
 value="Screen:"></h:outputLabel> </td>
 <td><h:selectOneMenu id="screenField"

 value="#{laptop.screen}">
 <a4j:support event="onchange"
 action="#{laptop.recalculatePrice}"
 reRender="priceText">
 </a4j:support>
 <f:selectItem itemLabel="14.1 inches" itemValue=
 "14.1 inches" />
 <f:selectItem itemLabel="15.4 inches" itemValue=
 "15.4 inches" />
 <f:selectItem itemLabel="17 inches" itemValue=
 "17 inches" />
 </h:selectOneMenu></td>
 <td align="right">
 <h:outputLabel for="processorField"
 value="Processor:">

 </h:outputLabel> </td>

Beyond Java EE

[368]

 <td><h:selectOneMenu id="processorField"

 value="#{laptop.processor}">
 <a4j:support event="onchange"
 action="#{laptop.recalculatePrice}"
 reRender="priceText"></a4j:support>
 <f:selectItem itemLabel="1 GHz" itemValue="1 GHz" />
 <f:selectItem itemLabel="2 GHz" itemValue="2 GHz" />
 <f:selectItem itemLabel="2.5 GHz" itemValue="2.5 GHz" />
 </h:selectOneMenu></td>
 <td align="right">
 <h:outputLabel for="memoryField"
 value="Memory:"></h:outputLabel> </td>
 <td><h:selectOneMenu id="memoryField"
 value="#{laptop.memory}">
 <a4j:support event="onchange"
 action="#{laptop.recalculatePrice}"
 reRender="priceText"></a4j:support>
 <f:selectItem itemLabel="512 MB" itemValue="512 MB" />
 <f:selectItem itemLabel="1 GB" itemValue="1 GB" />
 <f:selectItem itemLabel="2 GB" itemValue="2 GB" />
 </h:selectOneMenu></td>
 <td align="right"> <h:outputLabel for="priceText"
 value="Price:"></h:outputLabel> </td>
 <td>$
 <h:outputText id="priceText"
 value="#{laptop.price}">
 </h:outputText>
 USD
 </td>
 </tr>
 <tr>
 <td> </td>
 <!-- Dummy, "for looks only" button. -->
 <td colspan="7" align="left"><h:commandButton
 value="Submit"></h:commandButton></td>
 </tr>
 </table>
 </h:form>
</f:view>
</body>

</html>

Chapter 11

[369]

All we had to do to AJAX-enable our page was add the Ajax4jsf tag library via the
following line:

<%@ taglib uri="https://ajax4jsf.dev.java.net/ajax" prefix="a4j"%>

We then used the <a4j:support> tag from this library to add AJAX support to the
three <h:selectOneMenu> components in the page. As you can see, we need to nest
the <a4j:support> tag inside the elements we need to AJAX-enable.

The <a4j:support> tag contains three attributes that allow it to perform its
functionality. The event attribute allows us to specify what event to tie the AJAX
event to. In the example, we used onchange, but any valid event for the parent
component such as onblur, onmousover, etc. can be used.

The next attribute we need to specify is the action attribute. This attribute's value
must be a binding-value expression resolving to a managed bean's method. The
method that this value expression resolves to must not have any arguments. Typically,
this method will update one or more of a managed bean's properties, so that the new
value(s) can be rendered on the page. In our example, the value of this attribute points
to a method called recalculatePrice() in a managed bean named laptop. This
method recalculates the laptop's price based on the user's selections.

The last attribute we need to specify is the reRender attribute. This attribute's value
must contain one or more component IDs for components we need to re-render after
the event specified in the tag's event attribute takes place. In our example, we used
priceText as the value of this attribute, which matches the ID of the outputText
component near the bottom of the page. If we need to specify more than one
component ID as the value of the reRender attribute, we need to separate them
with commas.

As you can see, all we really need to do to AJAX-enable our page is to nest an <a4j:
support> element inside any components we would like to add AJAX support for.

Our page refers to a managed bean named laptop. Here is the code for that bean:

package net.ensode.glassfishbook;

public class Laptop
{
 private String screen;
 private String processor;
 private String memory;
 private int price;

 private static int BASE_PRICE = 500;

Beyond Java EE

[370]

 public Laptop()
 {
 price = BASE_PRICE;
 screen = "14.1 inches";
 processor = "1 GHz";
 memory = "512 MB";
 }

 public String getMemory()
 {
 return memory;
 }

 public void setMemory(String memory)
 {
 this.memory = memory;
 }

 public String getProcessor()
 {
 return processor;
 }

 public void setProcessor(String processor)
 {
 this.processor = processor;
 }

 public String getScreen()
 {
 return screen;
 }

 public void setScreen(String screen)
 {
 this.screen = screen;
 }

 public int getPrice()
 {
 return price;
 }

 public void setPrice(int price)
 {
 this.price = price;

 }

Chapter 11

[371]

 public void recalculatePrice()
 {
 price = BASE_PRICE;

 if (screen.equals("15.4 inches"))
 {
 price += 50;
 }
 else if (screen.equals("17 inches"))
 {
 price += 100;
 }

 if (processor.equals("2 GHz"))
 {
 price += 100;
 }
 else if (processor.equals("2.5 GHz"))
 {
 price += 150;
 }

 if (memory.equals("1 GB"))
 {
 price += 50;
 }
 else if (memory.equals("2 GB"))
 {
 price += 100;
 }
 }

}

Other than the recalculatePrice() method, the bean simply consists of
a few properties and their corresponding getter and setter methods. The
recalculatePrice() method is the one that is automatically invoked every time a
user changes one of the options from any of the drop-down components. All it does
is check the value of the bean's screen, processor, and memory properties, which
are bound to the value of the drop-down components and therefore automatically
updated when the user picks a new value, and calculates a new price for the
laptop. This new price is automatically displayed on the page by Ajax4jsf, because
it is bound to the <h:outputText> component with ID of priceText, and this
component is the one we specified as the value of the reRender attribute of all
<a4j:support> tags in the page.

Beyond Java EE

[372]

This bean, of course, needs to be declared in the application's faces-config.xml
deployment descriptor.

<faces-config xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.
 sun.com/xml/ns/javaee/web-facesconfig_1_2.xsd"
 version="1.2">
 <managed-bean>
 <managed-bean-name>laptop</managed-bean-name>
 <managed-bean-class>
 net.ensode.glassfishbook.Laptop
 </managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 </managed-bean>
</faces-config>

As we can see, no special configuration needs to be done in this file to AJAX-enable
the application.

After packaging the application into a WAR file, deploying it, and pointing the
browser to its URL, we should see a page like the following:

Chapter 11

[373]

The price at the right of the screen is updated automatically as the user selects
different values for each of the dropdowns. A screenshot does not do this application
much justice; in order to really appreciate the value of Ajax4jsf, readers are
encouraged to download the source code for this application, and deploy it to see
it in action.

As you can see, Ajax4jsf makes it almost too easy to add AJAX capabilities to our
JSF applications, making it pretty much an obvious choice when we wish to add this
kind of functionality to our applications.

Seam
Seam is a framework that simplifies the development of applications using
JavaServer Faces (JSF) and the Java Persistence API (JPA). Seam was conceived by
Gavin King, of Hibernate fame. Although Seam is distributed by JBoss, it is not tied
to the JBoss Application server. Seam application can be deployed to any Java EE-
compliant application server, such as GlassFish.

Seam provides a number of advantages over plain JSF, such as:

Seam allows binding EJB components directly to JSF pages, which actually
reduces/eliminates the glue code otherwise needed.
Seam reduces the usage of XML required by plain JSF, as managed beans can
be declared as such via annotations, eliminating the need to specify them in
the faces-config.xml deployment descriptor.
Seam can take advantage of Hibernate-specific functionality and easily
integrate it into JSF applications.

•

•

•

Beyond Java EE

[374]

Downloading Seam
Seam can be downloaded by pointing the browser to
http://labs.jboss.com/jbossseam/download and clicking on the
Download link for the latest stable Seam version.

The downloaded file will be called jboss-seam-1.2.1.GA.zip, or similar,
depending on the exact version of Seam. We will be referring to this file simply as
"the Seam ZIP file" in the next few sections.

Seam applications typically consist of one or more JAR files containing Enterprise
JavaBeans, and a WAR file containing a web application. It is common practice
to package the EJB JAR file(s), the WAR file, and any of their dependencies in an
Enterprise Archive (EAR) file. The following JAR files from the Seam download must
be placed in the root directory of our EAR file:

Chapter 11

[375]

jboss-seam.jar

hibernate-all.jar

thirdparty-all.jar

jboss-seam.jar is the primary Seam library, containing classes needed for any
Seam application. It can be found under the root directory of the Seam ZIP file.
hibernate-all.jar contains classes needed when using Hibernate as the JPA
provider for an application. It can be found under the lib directory of the Seam
ZIP file.

GlassFish comes preconfigured with Toplink Essentials as the default
JPA provider. This default JPA provider can be swapped for another
if we wish to do so. As Seam can take advantage of Hibernate-specific
extensions to the JPA specification, Seam applications typically use
Hibernate as their JPA provider.

thirdparty-all.jar contains several third-party libraries needed by Seam and/or
Hibernate. It can be found under the lib directory of the Seam ZIP file.

Additionally, Seam includes a number of JSF components; these are included in a
JAR file called jboss-seam-ui.jar. This file can be found under the root directory
of the Seam ZIP file. If we wish to use Seam-specific components in our application,
we need to include this file in the WEB-INF/lib directory of our WAR file.

In the following sections, we will be developing a modified version of the example
discussed in the Integrating JSF and JPA section of Chapter 6. The application will be
modified to take advantage of the Seam framework.

Configuring a Seam Application
Configuring a Seam application is not much different from configuring a standard
application using JSF and JPA. In addition to the standard deployment descriptor,
a Seam application can have an additional deployment descriptor called
component.xml.

<?xml version="1.0" encoding="UTF-8"?>
<components xmlns="http://jboss.com/products/seam/components"

 xmlns:core="http://jboss.com/products/seam/core">
 <core:init

 jndi-pattern="java:comp/env/seamdemo/#{ejbName}/local" />

</components>

•

•

•

Beyond Java EE

[376]

For our example, the only thing we need to set up in this file is the <core:init>
element of this deployment descriptor. This element lets our web application know
what JNDI name to use to look up EJBs used in the application.

The value of for the jndi-pattern for this element must always start with the string
java:comp/env, as this is the standard Environment Naming Context (ENC) for Java
EE applications. After that, we can use any pattern we wish, but the #{ejbName}
string must be included in the pattern. This string will resolve to the value of
the Seam-specific @Name annotation for the EJB in question. We will discuss this
annotation in the next section.

The components.xml deployment descriptor must be placed in the WEB-INF
directory of the web application's WAR file.

Just as for any Java EE web application, a web.xml deployment descriptor must be
present in the WEB-INF directory of the application's WAR file at deployment time.

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:
schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/
xml/ns/javaee/web-app_2_5.xsd">

 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>
 javax.faces.webapp.FacesServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>*.jsf</url-pattern>

 </servlet-mapping>

 <ejb-local-ref>
 <ejb-ref-name>
 seamdemo/CustomerController/local
 </ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <local-home/>
 <local>
 net.ensode.glassfishbook.CustomerControllerLocal
 </local>
 <ejb-link>CustomerController</ejb-link>
 </ejb-local-ref>
</web-app>

Chapter 11

[377]

As we can see, the web.xml deployment descriptor for a Seam application is not
much different from a web.xml deployment descriptor for a JSF application not
using Seam. The <ejb-local-ref> element is needed so that the code in the WAR
file can perform JNDI lookups on the EJBs it depends on. One thing to notice is that
the value of the <ejb-ref-name> element matches the pattern we declared in the
components.xml deployment descriptor (minus the java:comp/env Environment
Naming Context); in this case, the value of the @Name annotation for the EJB is used
instead of the #{ejbName} expression.

As Seam applications are JSF applications, a faces-config.xml deployment
descriptor must be present in the WAR file's WEB-INF directory.

<?xml version='1.0' encoding='UTF-8'?>

<faces-config version="1.2"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.
sun.com/xml/ns/javaee/web-facesconfig_1_2.xsd">

 <navigation-rule>
 <from-view-id>/save_customer.jsp</from-view-id>
 <navigation-case>
 <from-outcome>success</from-outcome>
 <to-view-id>/customer_saved.jsp</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>failure</from-outcome>
 <to-view-id>/error_saving_customer.jsp</to-view-id>
 </navigation-case>
 </navigation-rule>

 <lifecycle>
 <phase-listener>
 org.jboss.seam.jsf.SeamPhaseListener
 </phase-listener>
 </lifecycle>
</faces-config>

When developing Seam applications, it is not necessary to declare managed beans
in the faces-config.xml deployment descriptor; instead Seam-specific annotations
are added to the managed beans.

Just as with any JSF application, navigation rules must be declared in the
faces-config.xml deployment descriptor.

Beyond Java EE

[378]

JSF phase listeners are Java classes implementing the javax.faces.event.
PhaseListener interface. This interface has a number of methods that are invoked
automatically either before a JSF life-cycle phase starts or after it ends. Seam provides
a custom phase listener to implement its functionality. This phase listener must be
declared in the faces-config.xml as shown in the preceding example.

The three preceding deployment descriptors are packaged and deployed with the
application's WAR file.

The EJB JAR file for our EJB components must contain a seam.properties file. This
file contains Seam-specific properties. Even if we don't need to add any properties,
the file must still be there, because it lets Seam know that there are Seam components
in the JAR file. This file must be placed in the META-INF directory of the EJB JAR file.
Our example application does not need any properties; therefore it has an empty
seam.properties file in this location.

JPA entities are typically packaged in the EJB JAR file of a Seam application,
therefore a standard JPA persistence.xml deployment descriptor must be
placed in the JAR file's META-INF directory; refer to Chapter 4 for details on this
deployment descriptor.

As we mentioned before, it is recommended to use Hibernate as a JPA
provider when developing and deploying Seam applications. Simply
adding the Hibernate libraries to the application's EAR file will allow the
application to use Hibernate as a JPA provider. No special configuration
is needed.

Finally, just as with any EAR file, an application.xml deployment descriptor must
be present in the EAR file's META-INF directory.

<?xml version="1.0" encoding="UTF-8"?>
<application version="5" xmlns="http://java.sun.com/xml/ns/
javaee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:
schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/
xml/ns/javaee/application_5.xsd">
 <display-name>Registration</display-name>
 <module>
 <web>
 <web-uri>seamdemo.war</web-uri>
 <context-root>/seamdemo</context-root>
 </web>
 </module>
 <module>
 <ejb>seamdemo.jar</ejb>
 </module>
</application>

Chapter 11

[379]

As you can see, no Seam-specific configuration is needed in this deployment
descriptor. It simply declares the web and EJB module(s) in the application.

Developing a Seam Application
One of the nice features of Seam is that it allows session beans to be managed
beans in JSF applications. This allows us to take advantage of EJB features such as
container-managed transactions and security in our managed beans.

Our application has two managed beans: one acts as a controller in the Model View
Controller design pattern, the other one acts as the model. Our controller is a session
bean; it is a modified version of the CustomerController class we saw in Chapter 6.

package net.ensode.glassfishbook;

import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

import javax.annotation.Resource;
import javax.ejb.Stateless;
import javax.interceptor.Interceptors;
import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.PersistenceUnit;
import javax.sql.DataSource;

import org.jboss.seam.annotations.In;
import org.jboss.seam.annotations.Name;

@Stateless
@Name("CustomerController")
@Interceptors({org.jboss.seam.ejb.SeamInterceptor.class})
public class CustomerController implements
 CustomerControllerLocal
{
 @Resource(name = "jdbc/__CustomerDBPool")
 private DataSource dataSource;

 @PersistenceUnit(unitName = "customerPersistenceUnit")
 private EntityManagerFactory entityManagerFactory;

 @In
 private Customer customer;

 public String saveCustomer()
 {
 String returnValue = "success";
 EntityManager entityManager =

Beyond Java EE

[380]

 entityManagerFactory.createEntityManager();

 try
 {
 Long customerId = getNewCustomerId();
 customer.setCustomerId(customerId);
 entityManager.persist(customer);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 returnValue = "failure";
 }

 return returnValue;
 }

 private Long getNewCustomerId()
 {
 Connection connection;
 Long newCustomerId = null;
 try
 {
 connection = dataSource.getConnection();
 PreparedStatement preparedStatement =
 connection.prepareStatement(
 "select max(customer_id)+1 as new_customer_id " +
 "from customers");

 ResultSet resultSet = preparedStatement.executeQuery();

 if (resultSet != null && resultSet.next())
 {
 newCustomerId = resultSet.getLong("new_customer_id");
 }

 connection.close();

 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }

 return newCustomerId;
 }
}

Chapter 11

[381]

The main differences between this controller class and the one we saw in Chapter 6 is
that this version is a stateless session bean, as declared by the @Stateless annotation.
Also, the Seam specific @Name annotation is used to declare the name of the session
bean. This name is used in the <ejb-ref-name> element of the web application's
web.xml deployment descriptor to access this session bean. Also, the #{ejbName}
expression in the <core:init> element of the component.xml deployment descriptor
resolves to the value of this annotation.

EJB interceptors are Java classes that contain a method annotated with the
@AroundInvoke annotation, returning an instance of java.lang.Object and taking
a single instance of javax.ejb.InvocationContext as a parameter. This method
is invoked before and after any EJB that uses this interceptor. Interceptor usage in a
bean is done via the @Interceptors annotation. This annotation takes an array of
interceptor classes as a parameter. Alternatively, EJB interceptors can be declared in
the EJB JAR's ejb-jar.xml deployment descriptor. This alternative approach is used
when several EJBs need to use the same interceptor, as we don't need to decorate all
of them with the @Interceptors annotation.

For Seam applications, session beans need to use a Seam-specific interceptor, defined
in the org.jboss.seam.ejb.SeamInterceptor class.

The Customer class is a JPA entity containing customer information. In the previous
version of the application, we declared a getCustomer() and a setCustomer()
method to get and set the customer property of the controller. In this version, we
took advantage of the Seam-specific @In annotation to inject an instance of the
Customer class into the controller. The property name (customer, in this example)
must match the value of the @Name annotation of the injected class.

The business interface for the CustomerController session bean is called
CustomerControllerLocal. It is a standard session-bean business interface
decorated with the @Local annotation.

The Customer class is a JPA entity and it is also used as a JSF managed bean.

package net.ensode.glassfishbook;

import java.io.Serializable;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.Table;

import org.jboss.seam.ScopeType;
import org.jboss.seam.annotations.Name;
import org.jboss.seam.annotations.Scope;

import org.hibernate.validator.NotNull;

Beyond Java EE

[382]

import org.hibernate.validator.Length;

@Entity

@Table(name = "CUSTOMERS")
@Name("customer")
@Scope(ScopeType.EVENT)
public class Customer implements Serializable
{
 @Id
 @Column(name = "CUSTOMER_ID")
 private Long customerId;

 @Column(name = "FIRST_NAME")
 private String firstName;

 @Column(name = "LAST_NAME")
 private String lastName;

 private String email;

 public Long getCustomerId()
 {
 return customerId;
 }

 public void setCustomerId(Long customerId)
 {
 this.customerId = customerId;
 }

 public String getEmail()
 {
 return email;
 }

 public void setEmail(String email)
 {
 this.email = email;
 }

 @NotNull
 @Length(min=2,max=10)
 public String getFirstName()
 {
 return firstName;
 }

 public void setFirstName(String firstName)

 {
 this.firstName = firstName;
 }

Chapter 11

[383]

 @NotNull
 @Length(min=2,max=20)
 public String getLastName()
 {
 return lastName;
 }

 public void setLastName(String lastName)
 {
 this.lastName = lastName;
 }

}

The only difference between this version of the Customer class, and the one we saw
previously, is the addition of some Seam- and Hibernate-specific annotations. The
@Name annotation gives this class a name so that it can be injected into other classes
via the Seam-specific @In annotation.

The @Scope annotation is a Seam-specific annotation that indicates the scope of
the managed bean. Some of the valid values for this annotation are ScopeType.
EVENT, which is equivalent to the request scope in standard JSF, ScopeType.PAGE,
ScopeType.SESSION, and ScopeType.APPLICATION. These last three are
equivalent to the page, session, and application scopes in standard JSF. There are
also Seam-specific scopes that can be used as values for this annotation; consult the
Seam documentation for details.

Some of the getter methods in the Customer class are annotated with
Hibernate-specific annotations. These annotations allow Seam to validate
values for the corresponding fields. The @NotNull annotation marks a field as
required. The @Length annotation allows us to state the minimum and/or maximum
length of a field. Seam integrates these annotations with JSF validation without us
having to do any additional configuration or coding.

The Customer and CustomerController classes are deployed as part of an EJB
JAR file. The application's WAR file contains only JSPs and deployment descriptors.
There is nothing special we need to do to make the JSPs work with Seam. One thing
worth mentioning is that value-binding expressions need to use the value of the
@Name annotation of the EJB or entity in order to access its methods or properties,
where in standard JSF the bean name is defined in the <managed-bean-name>
element of the faces-config.xml deployment descriptor.

Beyond Java EE

[384]

After compiling, packaging, and deploying our application, and pointing the
browser to its URL, we should see a data-entry page for customer information.

Entering valid data where required results in a confirmation screen like the one
shown in Chapter 6; however, entering invalid data results in the data entry page
reloading and showing appropriate
error messages.

Here, we can see Seam's JSF and Hibernate validation annotation validation
in action.

Chapter 11

[385]

As we have seen in this section, Seam simplifies integration of JPA and JSF by
providing custom annotations and a simpler programming model. When using
standard JSF, it is not possible to use session beans as JSF managed beans, therefore
if we need to take advantage of EJB features such as security or container-managed
transactions, we need to invoke methods on session beans from JSF managed beans.
By allowing session beans to become JSF managed beans, Seam reduces the number
of classes we need to write considerably.

Summary
In this chapter, we covered some frameworks that build on top of the
Java EE specification.

We covered how to use Facelets as an alternative view technology for JSF, including
how to write pages in standard XHTML and have Facelets translate XHTML
elements into JSF components via the jsfc attribute. We also covered how to
separate a page's layout from its contents by taking advantage of Facelets templates.

Additionally, we covered how to easily AJAX-enable JSF web applications via the
Ajax4jsf API.

Finally, we covered how to write applications using the Seam framework, a JBoss
framework that integrates JavaServer Faces and EJB 3, including the Java
Persistence API.

Sending Email from
Java EE Applications

Applications deployed to GlassFish or any other Java EE-compliant application
server frequently need the ability to send emails. Thanks to the JavaMail API, part of
the Java EE 5 specification, sending emails from Java EE applications is fairly simple.

In order to implement the ability to send emails from a Java EE application, we
need to have access to a mail server, typically one using the Simple Mail Transfer
Protocol (SMTP)

GlassFish Configuration
Before we can start sending emails from our Java EE applications, we need to do
some initial GlassFish configuration. A new JavaMail session needs to be added by
logging into the GlassFish web console, expanding the Resources node in the tree at
the left-hand side of the page, then clicking on the JavaMail Sessions node.

Sending Email from Java EE Applications

[388]

To create a new JavaMail session, we need to click on the New... button. The main
area of the screen will look like the following screenshot:

Appendix A

[389]

In the JNDI Name field, we need to provide a JNDI name for our JavaMail session.
This name must be a valid, unique name of our choosing. Applications will use this
name to access the mail session.

In the Mail Host field, we need to specify the DNS name of the mail server we will
be using to send emails.

In the Default User field, we need to specify the default user name to use to connect
to the mail server.

Sending Email from Java EE Applications

[390]

In the Default Return Address field, we need to specify the default email address
that email recipients can use to reply to messages sent by our applications.

Specifying a Fake Return Address
The default return address does not have to be a real email address.
We can specify an invalid email address here. Keep in mind that if
we do this, then users will be unable to reply to emails sent from our
applications, therefore it would be a good idea to include a warning
in the message body letting the users know that they cannot reply to
the message.

We can optionally add a description for the JavaMail session in the Description field.

The Status checkbox allows us to enable or disable the JavaMail session. Disabled
sessions are not accessible by applications.

The Store Protocol is used to specify the value of the storage protocol of the mail
server, which is used to allow our applications to retrieve email messages from
it. Valid values for this field include imap, imaps, pop3, and pop3s. Consult your
system administrator for the correct value for your server.

Store Protocol Ignored If Applications Only Send Emails
It is a lot more common to have our applications be required to send
emails than it is to have them receive emails. If all applications using
our mail session will only be sending emails, then the value of the Store
Protocol field (and the Store Protocol Class field, discussed next) will
be ignored.

The Store Protocol Class field is used to indicate the service provider
implementation class corresponding to the specified store protocol. Valid values for
this field include:

com.sun.mail.imap.IMAPStore for a store protocol of IMAP
com.sun.mail.imap.IMAPSSLStore for a store protocol of IMAPS
com.sun.mail.pop3.POP3Store for a store protocol of POP3
com.sun.mail.pop3.POP3SSLStore for a store protocol of POP3S

The Transport Protocol field is used to specify the value of the transport protocol
of the mail server, which is used to allow our applications to send email messages
through it. Valid values for this field include smtp and smtps. Consult your system
administrator for the correct value for your server.

•

•

•

•

Appendix A

[391]

The Transport Protocol Class field is used to specify the service provider
implementation class corresponding to the specified transport protocol. Valid values
for this field include:

com.sun.mail.smtp.SMTPTransport for a transport protocol of SMTP
com.sun.mail.smtp.SMTPSSLTransport for a transport protocol of SMTPS

The Debug checkbox allows us to enable or disable debugging for the
JavaMail session.

If we need to add additional properties to the JavaMail session, we can do so by
clicking on the Add Property button near the bottom of the page, then entering the
property name and value in the corresponding fields.

Once we have entered all the required information for our server, we need to click
on the OK button at the top right of the page to create the JavaMail session. Once it is
created, it is ready to be used by deployed applications.

Implementing Email Delivery
Functionality
Once we have set up a JavaMail session as described in the previous section,
implementing the email delivery functionality is fairly simple. The process is
illustrated in the following code example:

package net.ensode.glassfishbook;

import javax.annotation.Resource;
import javax.mail.Message;
import javax.mail.MessagingException;
import javax.mail.Session;
import javax.mail.Transport;
import javax.mail.internet.AddressException;
import javax.mail.internet.InternetAddress;
import javax.mail.internet.MimeMessage;

public class FeedbackBean
{
 private String subject;
 private String body;

 @Resource(name = “mymailserver”)

 Session session;

 public String sendEmail()
 {

•

•

Sending Email from Java EE Applications

[392]

 try
 {
 Message msg = new MimeMessage(session);

 msg.setRecipient(Message.RecipientType.TO,

 new InternetAddress(

 “customer@customerdomain.com”));

 msg.setSubject(subject);

 msg.setText(body);

 Transport.send(msg);

 }
 catch (AddressException e)
 {
 e.printStackTrace();
 return “failure”;
 }
 catch (MessagingException e)
 {
 e.printStackTrace();
 return “failure”;
 }
 return “success”;
 }

 public String getBody()
 {
 return body;
 }

 public void setBody(String body)
 {
 this.body = body;
 }

 public String getSubject()
 {
 return subject;
 }

 public void setSubject(String subject)
 {
 this.subject = subject;
 }
}

Appendix A

[393]

This class is used as a managed bean for a simple JSF application. For brevity, other
parts of the application are not shown, as they do not deal with email functionality.
The full application can be downloaded from this book's website.

The first thing we need to do is inject an instance of the JavaMail session created as
described in the previous section by adding a class-level variable of type javax.
mail.Session and decorating it with the @Resource annotation. The value of the
name attribute of this annotation must match the JNDI name we gave our JavaMail
session when it was created.

We then need to create an instance of javax.mail.internet.MimeMessage, passing
the session object as a parameter to its constructor.

Once we create an instance of javax.mail.internet.MimeMessage, we need to add
a message recipient by invoking its setRecipient() method. The first parameter
for this method indicates if the recipient is to be sent the message (TO), carbon
copied (CC), or Blind Carbon Copied (BCC). We can indicate the type of recipient
by using Message.RecipientType.TO, Message.RecipientType.CC, or Message.
RecipientType.BCC as appropriate. The second parameter to the setRecipient()
method indicates the email address of the recipient. This parameter is of type javax.
mail.Address. This class is an abstract class, therefore we need to used one of its
subclasses, specifically javax.mail.internet.InternetAddress. The constructor
for this class takes a String parameter containing the email address of the recipient.
The setRecipient() method can be invoked multiple times to add recipients to be
sent, copied, or blind copied the message. Only a single address can be specified for
each recipient type.

If we need to send a message to multiple recipients, we can use the
addRecipients() method of the javax.mail.Message class (or one of its
subclasses, like javax.mail.internet.MimeMessage). This method takes the
recipient type as its first parameter, and an array of javax.mail.Address as its
second parameter. The message will be sent to all recipients in the array. By using
this method instead of setRecipient(), we are not limited to a single recipient per
recipient type.

Once we have specified the recipient or recipients, we need to add the message
subject and text by invoking the setSubject() and setText() methods on the
message instance, respectively.

Once we have set the message subject and text, we are ready to send it. This can be
accomplished by invoking the static send() method on the javax.mail.Transport
class. This method takes the message instance as a parameter.

IDE Integration
GlassFish provides integration with two of the most popular Java IDE's: NetBeans and
Eclipse. NetBeans, being a Sun Microsystems product, just like GlassFish, provides
GlassFish integration "out of the box". GlassFish provides an Eclipse server adapter.

NetBeans
NetBeans Standard and Full editions contain "out of the box" support for GlassFish.
When installing one of these editions of NetBeans, GlassFish is also installed.
NetBeans can be downloaded from http://www.netbeans.org.

NetBeans has several project categories; Java EE applications can be created from the
Web and Enterprise categories.

IDE Integration

[396]

For most project types in the Enterprise or Web categories, NetBeans requires us to
select an application server where the project will be deployed. GlassFish is labeled
Sun Java System Application 9 in the drop-down box used to select a server.

Once we create the project and we are ready to deploy it, we simply need to
right-click on the project and select Deploy Project from the resulting pop-up menu.

The project will be automatically built, packaged, and deployed. For web
applications, we also get the Run Project and Debug Project options. Both of these
options, in addition to building, packaging, and deploying the project, automatically
open a new browser window and point it to the application's URL. When we select
Debug Project, GlassFish will be started in debug mode, if necessary, and we can use
the NetBeans debugger to debug our project.

Appendix B

[397]

Eclipse
Unlike NetBeans, Eclipse does not come with GlassFish support out of the box.
Fortunately, it is very easy to add GlassFish support. Eclipse can be downloaded
from http://www.eclipse.org.

The first step to follow in order to add GlassFish support is to install the
Web Tools Project Eclipse plug-in. This plug-in can be easily installed via the
Eclipse Update Manager, refer to the Web Tools Project website at
http://www.eclipse.org/webtools/main.php.

After installing the Web Tools Project plug-in, we need to create a Java EE project by
clicking on File|New|Project... then selecting a Java EE project type from the list of
project categories. Most projects under the EJB, J2EE, JPA, and Web categories are
Java EE projects that need to be deployed to an application server such as GlassFish.

In our example, we will use a project of type Dynamic Web Project, but the
procedure is very similar for other Java EE project types.

IDE Integration

[398]

After selecting the project type and clicking Next >, Eclipse will ask, among other
things, for the Target Runtime for the project. Target Runtime is "Eclipse Speak" for
a Java EE application server.

Appendix B

[399]

At this point we should click on the New... button in order to select a new
target runtime.

In order to add GlassFish integration, we need to click on the Download additional
server adapters link.

IDE Integration

[400]

At this point, a number of additional server adapters will be listed, with GlassFish
being one of them. Selecting Glassfish and clicking on the button labeled Next > will
download the GlassFish server adapter. Once it is downloaded, Eclipse will ask to be
restarted. It is recommended that we do so.

Once Eclipse restarts, we need to start creating the project once again. This second
time around, there will be an option to select GlassFish as the server runtime when
clicking on the New... button next to the target runtime selection dropdown.

The next couple of windows will ask for a Java Runtime Environment to use with
GlassFish, the directory where GlassFish is installed, and for the server address, port,
domain name, etc. Sensible defaults are presented for all fields.

At this point, we can continue going through the wizard and creating our project.

Appendix B

[401]

We should now see GlassFish in the servers view, which is typically at the bottom of
the screen.

If the servers view is nowhere to be seen, it can be opened by clicking on
Window|Show View|Servers.

At this point, we are ready to start developing our application. When we are at a
point where we need to deploy it, we can do so by clicking on the GlassFish server
icon in the Servers view, and selecting Publish.

At this point, Eclipse will build, package, and deploy the application.

IDE Integration

[402]

For web applications, we can execute the application as soon as it is deployed by
right-clicking on the project and selecting Run As|Run on Server.

At this point, Eclipse will build, package, deploy the application, and open it in a
browser window embedded in Eclipse.

If we wish to debug the application using Eclipse's debugger, we can do so by
right-clicking on the project and selecting Debug As|Debug on Server. This will
cause Eclipse to start or restart GlassFish in debug mode, if necessary, and deploy
the application. We can then debug it using Eclipse's built in debugger.

Index
A
additional certificate realms 274, 275
additional file realms 273
admin-realm 249-251

user, adding to 249
Ajax4jsf

about 364
AJAX enabled application, writing 366-373
downloading 364, 365
JSF application, configuring 365, 366

Apache Commons Validator 185
appclient 294
application

deploying 12
application data, persisting across requests

56, 57
arithmetic operator 150
automatically matching roles to security

groups 320

B
bean managed transactions 306, 307
browsing message queues 237-239

C
certificate realm

about 265
additional certificate realms 274
applications, configuring 269-272
self signed certificates, creating 265-269

client, authenticating 320-322
composite primary keys 134

about 134

CUSTOMERDB used 135
requirements 136

container managed transactions 298-305
transaction attribute values 302, 303

custom data validation
about 184
custom validators, creating 184
validator methods 187

custom realms 283-289
custom tags, JSPs

creating 81

D
Data Access Objects 142
database. See also JDBC

CUSTOMERDB 97
data, modifying 107-109
data, retrieving 99-102
data retrieving methods 103
entities, retrieving 141
graphical representation, CUSTOMERDB

98
default messages customizing

message styles, customizing 192, 193
message text customizing 193

dependencies
ANT 8
 Java Development Kit 8

deploying, application
command line 20

domains, GlassFish
about 21
connecting postgre 24
connection pools, setting 24-29
creating 21, 22

[404]

database connectivity, setting 24
data sources, setting 29-31
deleting 23
ports 22
services 22
stopping 23

durable subscribers creating 243-246

E
EAR file 299
Eclipse 397-402
EJB

client, authenticating 320
container 293
EJB pool 292
EJB web services , securing 343
exposing as web services 339, 340
JAR file, deploying 293
life cycles 308
message driven bean life cycle 313
message driven beans 301
security 316
session beans 292
stateful session bean life cycle 308
stateless session bean life cycle 312
timer service 313
types 291
web service client 340

EJB timer service 313-316
EJB web service client

about 341
accessing 340

email delivery functionality
implementing 391-393

Enterprise JavaBeans. See EJB
entity relationships

about 114
CUSTOMERDB used 115
many to many relationships,

CUSTOMERDB used 128
one to many relationships,

CUSTOMERDB used 122
one to one relationships,

CUSTOMERDB used 116

F
Facelets

about 347
advantages over JSPs 347
application, configuring 349, 350
application, writing 351-359
downloading 348, 349
templating 359-363

fake return address, specifying 390
file realm

about 251, 252
additional file realms 273
authenticating 252-264
authenticating, disadvantage 257
user, adding to 251

formatting tag library 157, 158

G
GlassFish

advantages 6
configuring 387-391
dependencies 8
downloading 7, 8
installing 8
JMS, setting up for 221
license 6
overview 6
supported platforms 7

H
HTML forms

processing 42-53
HTTP servlet

about 33
methods 34

I
implicit objects

about 65
objects, retrieving 69

installing, GlassFish
dependencies 8

[405]

installation, verifying 10, 11
 performing 8-10

integrating, JSF and JPA
about 196
JSF core components 203
JSF HTML components 210
JSF tag libraries 218

J
Java Authentication and Authorization

Service 247
JavaBeans

attributes 73
CustomerBean 91-94
JSPs, integrating 73
properties, setting 76, 77
retrieving properties, JSPs used 73

Java Database Connectivity. See JDBC
Java EE 323

about 323
administrator password, changing 13
application deploying, command line used

19
application deploying, web console used

12-17
application undeploying, command line

used 20, 21
application undeploying, web console used

17-19
commercial application server 5
deploying 298
email, sending 387
JSF 173
open source sever 5
overview 5
technologies 5
web application 38

Java IDE’s
Eclipse 395
NetBeans 395

Java Messaging API. See JMS
Java Persistence API. See JPA
Java Persistence Query Language. See JPQL
JavaServer Faces. See JSF
JavaServer Pages. See JSPs

Java servlet. See servlet
JAX-WS

about 323
primitive types 336
valid types 335
web service client developing 330-334
web services, developing with 323

JDBC. See also database
about 99
data modifying from database 107, 109
data retrieving from database 99-106
Java Persistence API 109
prepared statement benefits 99
prepared statement methods 106

JDBC realm 277-282
JMS

connection factory, setting up 221-225
GlassFish, setting up 221
message queue, setting up 226
message queues 228
message topic, setting up 227
message topics 239

JMS connection factory, setting up 221
JMS message queue, setting up 226
JMS message topic, setting up 227
JPA

about 109
autoboxing 114
JSF, integrating 196
plain old java objects 113

JPQL
about 139
CUSTOMERDB 139

JSF
about 173
application, developing 173-175
custom data validation 184
custom validators, creating 184
deafault messages, customizing 191
JPA, integrating 196
message styles,customizing 192, 193
message text, customizing 193
tag libraries 218
validator methods 187

JSF core components
about 203

[406]

<f:actionListner> 203
< f:attribute> 203
< f:convertDateTime> 204
< f:converter> 204
< f:convertNumber> 204
<f:facet> 205
<f:param> 206
<f:phaseListener> 206
<f:selectItem> 206
<f:selectItems> 207
<f:setPropertyActionListener> 207
<f:subview> 207
<f:validateDoubleRange> 208
<f:validateLength> 208
<f:validateLongRange> 208
<f:validator> 209
<f:valueChangeListener> 209
<f:verbatim> 209
<f:view> 209

JSF HTML components
about 210
<h:column> 210
<h:commandButton> 210
<h:commandLink> 211
<h:dataTable> 211
<h:form> 211
<h:graphicImage> 212-215
<h:inputHidden> 212
<h:inputSecret> 212
<h:inputTextarea> 212
<h:outputText> 214
<h:message> 213
<h:messages> 213
<h:outputFormat> 213
<h:outputLabel> 214
<h:outputLink> 214
<h:outputText> 214
<h:panelGrid> 215
<h:panelGroup> 215
<h:selectBooleanCheckbox> 216
<h:selectManyCheckbox> 217
<h:selectManyListbox> 217
<h:selectManyMenu> 217
<h:selectOneListbox> 217
<h:selectOneMenu> 218
<h:selectOneRadio> 218

JSF tag libraries 218

JSP and JavaBean , integrating
 example, using JavaBean 73, 74
example, using tags 75

JSP page directives 63
JSPs

about 61
content, reusing 78, 80
custom tags 81
 declaration 79
deploying, war file used 62
developing 62
implicit objects 65-68
JavaBeans, integrating 73
objects, retrieving 69
page directives 63, 64
scriptlet 63

JSPs custom tags
creating, tag files used 87-91

JSP Standard Tag Library. See JSTL
JSTL

about 145
core tag library 145, 152, 153
formatting tag library 154
functions 167
SQL tag library 158
XML tag library 163

JSTL core tag library
about 145
arithmetic operator 150
logical operator 149
relational operator 148

JSTL formatting tag library
about 154
example 154
JSP code, accessing 156
JSP pages, accessing 156

JSTL functions 169, 170
JSTL SQL tag library

about 158
example 159

JSTL XML tag library
about 163
example 163

L
LDAP realm 275, 276

[407]

logical operator 149
life cycles, EJB

about 308
message driven bean life cycle 313
stateful session bean life cycle 308
stateless session bean life cycle 312

M
many to many relationships 128
message driven bean life cycle 313
message driven beans 301, 302
message queues

about 228
browsing 237
messages, adding 228
messages, retrieving from 232
messages, sending to 228
messages receiving asynchronously 234
message types 231

message styles, customizing 192, 193
message text, customizing 193
message topics

durable subscribers, creating 243
messages, receiving from 241
messages, sending to 239
pub/sub domain 239
pub/sub domain,disadvantage 243

method binding expression 179
Model View Controller 62

N
NetBeans 395, 396

O
one to many relationships 122
one to one relationships 116
operators

arithmetic operator 150
logical operator 149
relational operator 148

P
persisting application data across requests

about 58

object,retrieving 57
predefined security realms

about 248
admin-realm 249
certificate realm 265
file realm 251
file realm authenticating 252

pub/sub domain
about 239
disadvantages 243

R
realms. See security realms
receiving messages asynchronously from

message queue 234-237
receiving messages from a message topic

241, 242
relational operator 148
relationships. See entity relationships
remote business interface 293
response redirection

about 53
 disadvantage 53
illustrating 53

retrieving messages from message queue
232-234

S
Seam

about 373
advantages over JSF 373
application, configuring 375-379
application, developing 379-384
downloading 374, 375

securing, web services 341-343
securing web services, EJB 343-345
security, EJB

about 316-320
client, authenticating 320

security realms
about 247
additional certificate realms 274
additional file realms 273
additional realms 273
custom realms 283

[408]

JDBC realms 277
LDAP realms 275
predefined 248
solaris realms 276
uses 248

sending messages to message queue
228-230

sending messages to message topic 239, 240
servlet

advantages over CGI scripts 61
coding 35
compiling 36
configuring 37
deploying 5
developing 5
disadvantages 61
HTML forms, processing 42
HTTP servlet 33
HTTP servlet method 34
 object, attaching 58

servlet, HTML
 web.xml file 42, 43

servlet,HTML forms processing
adding second HTML file 46
adding second servlet 46

session beans
DAO design pattern, implementing

295-298
EAR file 299
invoking from web applications 298, 299
simple session bean 292
stateless session beans 292

simple session bean
about 292
remote business interface 293

solaris realm 276, 217
SQL tag library 162, 163
stateful and stateless session beans

difference 292
stateful session bean

Does Not Exist state 309
Passive state 309
Ready state 309

stateful session bean life cycle 308-311
stateless session bean life cycle 312

T
Tag Library Descriptor 84, 85
tags

JSTL core tag library 145
JSTL formatting tag 154
JSTL SQL tag 158
JSTL XML tag 163

TLD 84, 85
transactions, EJB

bean managed transactions 306
container managed transactions 302

U
Unified Expression Language 91

V
validator methods

about 187
StringUtils 188

value binding expression 177

W
war file

creating 39
deploying 41
directories,root directories 39

web application
 deploying, war file used 40
 packaging 38
testing 40, 41

Web ARchive. See war file
web service client, EJB 340
web services

attachments, sending to 336-338
client, developing 330
developing, JAX-WS used 323-328
securing 341

Web Services Definition Language 329

X
XML tag library 166-168

	Java EE 5 Development using GlassFish Application Server
	Table of Contents
	Preface
	Chapter 1: Getting Started with GlassFish
	Overview of Java EE and GlassFish
	GlassFish Advantages
	Performing the Installation
	Deploying Our First Java EE Application
	Deploying an Application through the Web Console
	Undeploying an Application through the Web Console
	Deploying an Application through the Command Line
	Undeploying an Application through the Command Line

	Deleting Domains
	Stopping a Domain
	Setting Up Database Connectivity
	Setting Up Connection Pools

	Summary

	Chapter 2: Servlet Development and Deployment
	Writing Our First Servlet
	Compiling the Servlet
	Configuring the Servlet
	Packaging the Web Application
	Deploying the Web Application
	Testing the Web Application
	Processing HTML Forms
	Request Forwarding and Response Redirection
	Request Forwarding
	Response Redirection

	Persisting Application Data across Requests
	Summary

	Chapter 3: JavaServer Pages
	Introduction to JavaServer Pages
	Developing Our First JSP
	JSP Implicit Objects
	JSPs and JavaBeans
	Reusing JSP Content
	JSP Custom Tags
	Extending SimpleTagSupport
	Using Tag Files to Create Custom JSP Tags

	Unified Expression Language
	Summary

	Chapter 4: Database Connectivity
	The CustomerDB Database
	JDBC
	Retrieving Data from a Database
	Modifying Database Data
	The Java Persistence API

	Entity Relationships
	One-to-One Relationships
	One-to-Many Relationships
	Many-to-Many Relationships

	Composite Primary Keys
	Java Persistence Query Language

	Final Notes
	Summary

	Chapter 5: JSP Standard Tag Library
	Core JSTL Tag Library
	Formatting JSTL Tag Library
	SQL JSTL Tag Library
	XML JSTL Tag Library
	JSTL Functions
	Summary

	Chapter 6: JavaServer Faces
	Custom Data Validation
	Creating Custom Validators
	Validator Methods

	Integrating JSF and JPA
	JSF Core Components
	<f:actionListener>
	<f:attribute>
	<f:convertDateTime>
	<f:convertNumber>
	<f:converter>
	<f:facet>
	<f:loadBundle>
	<f:param>
	<f:phaseListener>
	<f:selectItem>
	<f:selectItems>
	<f:setPropertyActionListener>
	<f:subview>
	<f:validateDoubleRange>
	<f:validateLength>
	<f:validateLongRange>
	<f:validator>
	<f:valueChangeListener>
	<f:verbatim>
	<f:view>

	JSF HTML Components
	<h:column>
	<h:commandButton>
	<h:commandLink>
	<h:dataTable>
	<h:form>
	<h:graphicImage>
	<h:inputHidden>
	<h:inputSecret>
	<h:inputText>
	<h:inputTextarea>
	<h:message>
	<h:messages>
	<h:outputFormat>
	<h:outputLabel>
	<h:outputLink>
	<h:outputText>
	<h:panelGrid>
	<h:panelGroup>
	<h:selectBooleanCheckbox>
	<h:selectManyCheckbox>
	<h:selectManyListbox>
	<h:selectManyMenu>
	<h:selectOneListbox>
	<h:selectOneMenu>
	<h:selectOneRadio>

	Additional JSF Tag Libraries

	Summary

	Chapter 7: Java Messaging Service
	Setting Up GlassFish for JMS
	Setting Up a JMS Connection Factory
	Setting Up a JMS Message Queue
	Setting Up a JMS Message Topic

	Message Queues
	Sending Messages to a Message Queue
	Retrieving Messages from a Message Queue
	Asynchronously Receiving Messages from a Message Queue
	Browsing Message Queues

	Message Topics
	Sending Messages to a Message Topic
	Receiving Messages from a Message Topic
	Creating Durable Subscribers

	Summary

	Chapter 8: Security
	Security Realms
	Predefined Security Realms
	admin-realm
	The file Realm
	The certificate Realm

	Defining Additional Realms
	Defining Additional File Realms
	Defining Additional Certificate Realms
	Defining an LDAP Realm
	Defining a Solaris Realm
	Defining a JDBC Realm
	Defining Custom Realms

	Summary

	Chapter 9: Enterprise JavaBeans
	Session Beans
	Simple Session Bean
	A More Realistic Example
	Invoking Session Beans from Web Applications

	Message-Driven Beans
	Transactions in Enterprise Java Beans
	Container-Managed Transactions
	Bean-Managed Transactions

	Enterprise JavaBean Life Cycles
	Stateful Session Bean Life Cycle
	Stateless Session Bean Life Cycle
	Message-Driven Bean Life Cycle

	EJB Timer Service
	EJB Security
	Client Authentication

	Summary

	Chapter 10: Web Services
	Developing Web Services with JAX-WS
	Developing a Web Service Client
	Sending Attachments to Web Services
	Exposing EJBs as Web Services
	EJB Web Service Clients

	Securing Web Services
	Securing EJB Web Services

	Summary

	Chapter 11: Beyond Java EE
	Facelets
	Downloading Facelets
	Configuring Our Facelets Application
	Writing a Facelets Application
	Facelets Templating

	Ajax4jsf
	Downloading Ajax4jsf
	Configuring Our JSF Application for Ajax4jsf
	Writing an AJAX-Enabled Application with Ajax4jsf

	Seam
	Downloading Seam
	Configuring a Seam Application
	Developing a Seam Application

	Summary

	Appendix A: Sending Email from Java EE Applications
	GlassFish Configuration
	Implementing Email Delivery Functionality

	Appendix B: IDE Integration
	NetBeans
	Eclipse

	Index

